| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem80.o |
. . . . . . . . 9
⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 2 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡)) |
| 3 | 2 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡))) |
| 4 | 3 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶)) |
| 5 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2)) |
| 6 | 5 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2))) |
| 7 | 6 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 ·
(sin‘(𝑡 /
2)))) |
| 8 | 4, 7 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
| 9 | 8 | cbvmptv 4750 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
| 10 | 1, 9 | eqtr2i 2645 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂 |
| 11 | 10 | oveq2i 6661 |
. . . . . . 7
⊢ (ℝ
D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂) |
| 12 | 11 | dmeqi 5325 |
. . . . . 6
⊢ dom
(ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D
𝑂) |
| 13 | 12 | ineq2i 3811 |
. . . . 5
⊢ (ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
| 14 | 13 | sneqi 4188 |
. . . 4
⊢ {(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))} |
| 15 | 14 | uneq1i 3763 |
. . 3
⊢ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 16 | | snfi 8038 |
. . . . 5
⊢ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈
Fin |
| 17 | | fzofi 12773 |
. . . . . 6
⊢
(0..^𝑁) ∈
Fin |
| 18 | | eqid 2622 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 19 | 18 | rnmptfi 39351 |
. . . . . 6
⊢
((0..^𝑁) ∈ Fin
→ ran (𝑗 ∈
(0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) |
| 20 | 17, 19 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin |
| 21 | | unfi 8227 |
. . . . 5
⊢ (({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈ Fin ∧ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 22 | 16, 20, 21 | mp2an 708 |
. . . 4
⊢ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin |
| 23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 24 | 15, 23 | syl5eqel 2705 |
. 2
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 25 | | id 22 |
. . . 4
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 26 | 15 | unieqi 4445 |
. . . 4
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ∪
({(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 27 | 25, 26 | syl6eleq 2711 |
. . 3
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 28 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑) |
| 29 | | uniun 4456 |
. . . . . . . . 9
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = (∪
{(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 30 | 29 | eleq2i 2693 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 31 | | elun 3753 |
. . . . . . . 8
⊢ (𝑠 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 32 | 30, 31 | sylbb 209 |
. . . . . . 7
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 33 | 32 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 34 | | fourierdlem80.sf |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
| 35 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
(0...𝑁) ∈
V |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑁) ∈ V) |
| 37 | | fex 6490 |
. . . . . . . . . . . . 13
⊢ ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ V) → 𝑆 ∈ V) |
| 38 | 34, 36, 37 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ V) |
| 39 | | rnexg 7098 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ V → ran 𝑆 ∈ V) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑆 ∈ V) |
| 41 | | inex1g 4801 |
. . . . . . . . . . 11
⊢ (ran
𝑆 ∈ V → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
V) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V) |
| 43 | | unisng 4452 |
. . . . . . . . . 10
⊢ ((ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈ V → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 45 | 44 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
| 46 | 45 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
| 47 | 46 | orbi1d 739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))))) |
| 48 | 33, 47 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 49 | | dvf 23671 |
. . . . . . . . 9
⊢ (ℝ
D 𝑂):dom (ℝ D 𝑂)⟶ℂ |
| 50 | 49 | a1i 11 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
| 51 | | elinel2 3800 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 52 | 50, 51 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 53 | 52 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 54 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V |
| 55 | 54 | dfiun3 5380 |
. . . . . . . . . . 11
⊢ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 56 | 55 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 57 | 56 | biimpri 218 |
. . . . . . . . 9
⊢ (𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 58 | 57 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 59 | | eliun 4524 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 60 | 58, 59 | sylib 208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 61 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
| 62 | | nfmpt1 4747 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 63 | 62 | nfrn 5368 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 64 | 63 | nfuni 4442 |
. . . . . . . . . 10
⊢
Ⅎ𝑗∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 65 | 64 | nfcri 2758 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 66 | 61, 65 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 67 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑗((ℝ D
𝑂)‘𝑠) ∈ ℂ |
| 68 | 49 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
| 69 | 1 | reseq1i 5392 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 70 | | ioossicc 12259 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
| 71 | | fourierdlem80.sjss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 72 | 70, 71 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 73 | 72 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 74 | 69, 73 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 75 | | fourierdlem80.y |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 76 | 74, 75 | syl6reqr 2675 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 77 | 76 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 78 | | ax-resscn 9993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℝ
⊆ ℂ |
| 79 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 80 | | fourierdlem80.f |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 81 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ) |
| 82 | | fourierdlem80.xre |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 83 | 82 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
| 84 | | fourierdlem80.a |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 85 | | fourierdlem80.b |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 86 | 84, 85 | iccssred 39727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 87 | 86 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
| 88 | 83, 87 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 89 | 81, 88 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 90 | 89 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 91 | | fourierdlem80.c |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 92 | 91 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
| 94 | 90, 93 | subcld 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 95 | | 2cnd 11093 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ) |
| 96 | 86, 79 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 97 | 96 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
| 98 | 97 | halfcld 11277 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ) |
| 99 | 98 | sincld 14860 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
| 100 | 95, 99 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 101 | | 2ne0 11113 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ≠
0 |
| 102 | 101 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0) |
| 103 | | fourierdlem80.ab |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 104 | 103 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π)) |
| 105 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 0 ↔ 0 = 𝑠) |
| 106 | 105 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 0 → 0 = 𝑠) |
| 107 | 106 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠) |
| 108 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 109 | 107, 108 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 110 | 109 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 111 | | fourierdlem80.n0 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 112 | 111 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 113 | 110, 112 | pm2.65da 600 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0) |
| 114 | 113 | neqned 2801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) |
| 115 | | fourierdlem44 40368 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
| 116 | 104, 114,
115 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0) |
| 117 | 95, 99, 102, 116 | mulne0d 10679 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
| 118 | 94, 100, 117 | divcld 10801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈
ℂ) |
| 119 | 118, 1 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
| 120 | | ioossre 12235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ |
| 121 | 120 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ) |
| 122 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 123 | 122 | tgioo2 22606 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 124 | 122, 123 | dvres 23675 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D
(𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 125 | 79, 119, 86, 121, 124 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 126 | | ioontr 39736 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) |
| 127 | 126 | reseq2i 5393 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℝ
D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 128 | 125, 127 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 129 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 130 | 77, 129 | eqtr2d 2657 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌)) |
| 131 | 130 | dmeqd 5326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌)) |
| 132 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ) |
| 133 | 82 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ) |
| 134 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 135 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
| 136 | | elfzofz 12485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
| 137 | 136 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁)) |
| 138 | 135, 137 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) |
| 139 | 134, 138 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℝ) |
| 140 | | fzofzp1 12565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
| 141 | 140 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁)) |
| 142 | 135, 141 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) |
| 143 | 134, 142 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 144 | | fdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):𝐼⟶ℝ) |
| 145 | | fourierdlem80.i |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐼 = ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) |
| 146 | 145 | feq2i 6037 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 147 | 144, 146 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 148 | 145 | reseq2i 5393 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ↾ 𝐼) = (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 149 | 148 | oveq2i 6661 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℝ
D (𝐹 ↾ 𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))) |
| 150 | 149 | feq1i 6036 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 151 | 147, 150 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 152 | 103 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 153 | 72, 152 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 154 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 155 | 72, 154 | ssneldd 3606 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 156 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ) |
| 157 | 132, 133,
139, 143, 151, 153, 155, 156, 75 | fourierdlem57 40380 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧
(ℝ D (𝑠 ∈
((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2)))) |
| 158 | 157 | simpli 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 /
2)))↑2))))) |
| 159 | 158 | simpld 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ) |
| 160 | | fdm 6051 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D
𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 162 | 131, 161 | eqtr2d 2657 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 163 | | resss 5422 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) |
| 164 | | dmss 5323 |
. . . . . . . . . . . . . . 15
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
| 165 | 163, 164 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
| 166 | 162, 165 | eqsstrd 3639 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
| 167 | 166 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
| 168 | | simp3 1063 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 169 | 167, 168 | sseldd 3604 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 170 | 68, 169 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 171 | 170 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
| 172 | 171 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
| 173 | 66, 67, 172 | rexlimd 3026 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)) |
| 174 | 60, 173 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 175 | 53, 174 | jaodan 826 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 176 | 28, 48, 175 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 177 | 176 | abscld 14175 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 178 | 27, 177 | sylan2 491 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 179 | | id 22 |
. . . 4
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 180 | 179, 15 | syl6eleq 2711 |
. . 3
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 181 | | elsni 4194 |
. . . . . 6
⊢ (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 182 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 183 | | fzfid 12772 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 184 | | rnffi 39356 |
. . . . . . . . . . 11
⊢ ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin) |
| 185 | 34, 183, 184 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑆 ∈ Fin) |
| 186 | | infi 8184 |
. . . . . . . . . 10
⊢ (ran
𝑆 ∈ Fin → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
Fin) |
| 187 | 185, 186 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
| 188 | 187 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
| 189 | 182, 188 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin) |
| 190 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝜑 |
| 191 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠ran
𝑆 |
| 192 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠ℝ |
| 193 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠
D |
| 194 | | nfmpt1 4747 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 195 | 1, 194 | nfcxfr 2762 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠𝑂 |
| 196 | 192, 193,
195 | nfov 6676 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑠(ℝ D 𝑂) |
| 197 | 196 | nfdm 5367 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠dom
(ℝ D 𝑂) |
| 198 | 191, 197 | nfin 3820 |
. . . . . . . . . 10
⊢
Ⅎ𝑠(ran
𝑆 ∩ dom (ℝ D
𝑂)) |
| 199 | 198 | nfeq2 2780 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
| 200 | 190, 199 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 201 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ 𝑟) |
| 202 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 203 | 201, 202 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 204 | 203, 51 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 205 | 204 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 206 | 49 | ffvelrni 6358 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 207 | 206 | abscld 14175 |
. . . . . . . . . 10
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 208 | 205, 207 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
| 209 | 208 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠 ∈ 𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)) |
| 210 | 200, 209 | ralrimi 2957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
| 211 | | fimaxre3 10970 |
. . . . . . 7
⊢ ((𝑟 ∈ Fin ∧ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 212 | 189, 210,
211 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 213 | 181, 212 | sylan2 491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 214 | 213 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 215 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑) |
| 216 | | elunnel1 3754 |
. . . . . 6
⊢ ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 217 | 216 | adantll 750 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 218 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑟 ∈ V |
| 219 | 18 | elrnmpt 5372 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 220 | 218, 219 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 221 | 220 | biimpi 206 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 222 | 221 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 223 | 63 | nfcri 2758 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 224 | 61, 223 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 225 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑗∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 |
| 226 | | fourierdlem80.fbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 227 | | fourierdlem80.fdvbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 228 | | reeanv 3107 |
. . . . . . . . . . . . 13
⊢
(∃𝑤 ∈
ℝ ∃𝑧 ∈
ℝ (∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 229 | 226, 227,
228 | sylanbrc 698 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 230 | | simp1 1061 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 231 | | simp2l 1087 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ) |
| 232 | | simp2r 1088 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ) |
| 233 | 230, 231,
232 | jca31 557 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ)) |
| 234 | | simp3l 1089 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 235 | | simp3r 1090 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 236 | 233, 234,
235 | jca31 557 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 237 | | fourierdlem80.ch |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 238 | 236, 237 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒) |
| 239 | 237 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 240 | | simp-5l 808 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝜑) |
| 241 | 239, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝜑) |
| 242 | 241, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐹:ℝ⟶ℝ) |
| 243 | 241, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑋 ∈ ℝ) |
| 244 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 245 | 239, 244 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 246 | 245, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
| 247 | 245, 143 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 248 | | fourierdlem80.slt |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 249 | 245, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 250 | 71, 152 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 251 | 245, 250 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 252 | 71, 154 | ssneldd 3606 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
| 253 | 245, 252 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
| 254 | 245, 151 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 255 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ) |
| 256 | 239, 255 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑤 ∈ ℝ) |
| 257 | 239 | simplrd 793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 258 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 259 | 258, 145 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ 𝐼) |
| 260 | | rspa 2930 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ 𝑡 ∈ 𝐼) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 261 | 257, 259,
260 | syl2an 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 262 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ) |
| 263 | 239, 262 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑧 ∈ ℝ) |
| 264 | 149 | fveq1i 6192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D (𝐹 ↾ 𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡) |
| 265 | 264 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) |
| 266 | 239 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 267 | 266 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 268 | 265, 267 | syl5eqbrr 4689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
| 269 | 259, 268 | sylan2 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
| 270 | 241, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐶 ∈ ℝ) |
| 271 | 242, 243,
246, 247, 249, 251, 253, 254, 256, 261, 263, 269, 270, 75 | fourierdlem68 40391 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 272 | 271 | simprd 479 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
| 273 | 271 | simpld 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 274 | 273 | raleqdv 3144 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 275 | 274 | rexbidv 3052 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 276 | 272, 275 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
| 277 | 126 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 278 | 277 | reseq2i 5393 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 279 | 278 | fveq1i 6192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) |
| 280 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
| 281 | 280 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
| 282 | 245, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 283 | 282 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 284 | 69, 283 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 285 | 284, 75 | syl6reqr 2675 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 286 | 285 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 287 | 286 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 288 | 125 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 289 | 241, 288 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 290 | 287, 289 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 291 | 290 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 292 | 279, 281,
291 | 3eqtr3a 2680 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 293 | 292 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠))) |
| 294 | 293 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 295 | 294 | ralbidva 2985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 296 | 295 | rexbidv 3052 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 297 | 276, 296 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 298 | 238, 297 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 299 | 298 | 3exp 1264 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 300 | 299 | rexlimdvv 3037 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 301 | 229, 300 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 302 | 301 | 3adant3 1081 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 303 | | raleq 3138 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 304 | 303 | 3ad2ant3 1084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 305 | 304 | rexbidv 3052 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 306 | 302, 305 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 307 | 306 | 3exp 1264 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 308 | 307 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 309 | 224, 225,
308 | rexlimd 3026 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 310 | 222, 309 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 311 | 215, 217,
310 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 312 | 214, 311 | pm2.61dan 832 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 313 | 180, 312 | sylan2 491 |
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 314 | | pm3.22 465 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
| 315 | | elin 3796 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
| 316 | 314, 315 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 317 | 316 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 318 | 44 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 319 | 318 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 320 | 317, 319 | eleqtrd 2703 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 321 | 320 | orcd 407 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 322 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑) |
| 323 | 78 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆
ℂ) |
| 324 | 119 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
| 325 | 84 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ) |
| 326 | 85 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ) |
| 327 | 325, 326 | iccssred 39727 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 328 | 323, 324,
327 | dvbss 23665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵)) |
| 329 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂)) |
| 330 | 328, 329 | sseldd 3604 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵)) |
| 331 | 330 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵)) |
| 332 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆) |
| 333 | | fourierdlem80.relioo |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 334 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘𝑗) = (𝑆‘𝑘)) |
| 335 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1)) |
| 336 | 335 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1))) |
| 337 | 334, 336 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 338 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V |
| 339 | 337, 18, 338 | fvmpt 6282 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 340 | 339 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))))) |
| 341 | 340 | rexbiia 3040 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
(0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 342 | 333, 341 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 343 | 54, 18 | dmmpti 6023 |
. . . . . . . . . . . . 13
⊢ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁) |
| 344 | 343 | rexeqi 3143 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 345 | 342, 344 | sylibr 224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 346 | 322, 331,
332, 345 | syl21anc 1325 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 347 | | funmpt 5926 |
. . . . . . . . . . 11
⊢ Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 348 | | elunirn 6509 |
. . . . . . . . . . 11
⊢ (Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
| 349 | 347, 348 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
| 350 | 346, 349 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 351 | 350 | olcd 408 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 352 | 321, 351 | pm2.61dan 832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 353 | | elun 3753 |
. . . . . . 7
⊢ (𝑟 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 354 | 352, 353 | sylibr 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 355 | 354, 29 | syl6eleqr 2712 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 356 | 355 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 357 | | dfss3 3592 |
. . . 4
⊢ (dom
(ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 358 | 356, 357 | sylibr 224 |
. . 3
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 359 | 358, 26 | syl6sseqr 3652 |
. 2
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 360 | 24, 178, 313, 359 | ssfiunibd 39523 |
1
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) |