Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinicc Structured version   Visualization version   GIF version

Theorem iooiinicc 39769
Description: A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iooiinicc.a (𝜑𝐴 ∈ ℝ)
iooiinicc.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinicc (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21adantr 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ)
3 iooiinicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
5 1nn 11031 . . . . . . . . 9 1 ∈ ℕ
6 ioossre 12235 . . . . . . . . 9 ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ
7 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
87oveq2d 6666 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
97oveq2d 6666 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
108, 9oveq12d 6668 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))))
1110sseq1d 3632 . . . . . . . . . 10 (𝑛 = 1 → (((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3309 . . . . . . . . 9 ((1 ∈ ℕ ∧ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
135, 6, 12mp2an 708 . . . . . . . 8 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 4571 . . . . . . . 8 (∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . 7 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 477 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3604 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
19 nfv 1843 . . . . . . . 8 𝑛𝜑
20 nfcv 2764 . . . . . . . . 9 𝑛𝑥
21 nfii1 4551 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2220, 21nfel 2777 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2319, 22nfan 1828 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
24 simpll 790 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
25 iinss2 4572 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2625adantl 482 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
27 simpl 473 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2826, 27sseldd 3604 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2928adantll 750 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
30 simpr 477 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
311adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
3231adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
33 elioore 12205 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
3433adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
35 nnrecre 11057 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3635adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3734, 36readdcld 10069 . . . . . . . . . . 11 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3837adantll 750 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3935adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
4031, 39resubcld 10458 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
4140rexrd 10089 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
4241adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
433adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
4443, 39readdcld 10069 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
4544rexrd 10089 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
4645adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
47 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
48 ioogtlb 39717 . . . . . . . . . . . 12 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 − (1 / 𝑛)) < 𝑥)
4942, 46, 47, 48syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝑥)
5035adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5134adantll 750 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
5232, 50, 51ltsubaddd 10623 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) < 𝑥𝐴 < (𝑥 + (1 / 𝑛))))
5349, 52mpbid 222 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝑥 + (1 / 𝑛)))
5432, 38, 53ltled 10185 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5524, 29, 30, 54syl21anc 1325 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5655ex 450 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝑥 + (1 / 𝑛))))
5723, 56ralrimi 2957 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛)))
582rexrd 10089 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
5923, 58, 18xrralrecnnle 39602 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴𝑥 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛))))
6057, 59mpbird 247 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴𝑥)
6144adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
62 iooltub 39735 . . . . . . . . . . 11 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6342, 46, 47, 62syl3anc 1326 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6451, 61, 63ltled 10185 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6524, 29, 30, 64syl21anc 1325 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6665ex 450 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6723, 66ralrimi 2957 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6818rexrd 10089 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
6923, 68, 4xrralrecnnle 39602 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
7067, 69mpbird 247 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
712, 4, 18, 60, 70eliccd 39726 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴[,]𝐵))
7271ralrimiva 2966 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
73 dfss3 3592 . . 3 ( 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
7472, 73sylibr 224 . 2 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵))
75 1rp 11836 . . . . . . . . 9 1 ∈ ℝ+
7675a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
77 nnrp 11842 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7876, 77rpdivcld 11889 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7978adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
8031, 79ltsubrpd 11904 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
8143, 79ltaddrpd 11905 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
82 iccssioo 12242 . . . . 5 ((((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ ((𝐴 − (1 / 𝑛)) < 𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8341, 45, 80, 81, 82syl22anc 1327 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8483ralrimiva 2966 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
85 ssiin 4570 . . 3 ((𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8684, 85sylibr 224 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8774, 86eqssd 3620 1 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   ciin 4521   class class class wbr 4653  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  +crp 11832  (,)cioo 12175  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-icc 12182  df-fl 12593
This theorem is referenced by:  iccvonmbllem  40892
  Copyright terms: Public domain W3C validator