| Step | Hyp | Ref
| Expression |
| 1 | | iooiinicc.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ) |
| 3 | | iooiinicc.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ) |
| 5 | | 1nn 11031 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
| 6 | | ioossre 12235 |
. . . . . . . . 9
⊢ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆
ℝ |
| 7 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (1 / 𝑛) = (1 / 1)) |
| 8 | 7 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1))) |
| 9 | 7 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1))) |
| 10 | 8, 9 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1)))) |
| 11 | 10 | sseq1d 3632 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆
ℝ)) |
| 12 | 11 | rspcev 3309 |
. . . . . . . . 9
⊢ ((1
∈ ℕ ∧ ((𝐴
− (1 / 1))(,)(𝐵 + (1
/ 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
| 13 | 5, 6, 12 | mp2an 708 |
. . . . . . . 8
⊢
∃𝑛 ∈
ℕ ((𝐴 − (1 /
𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
| 14 | | iinss 4571 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ ((𝐴 − (1 /
𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . 7
⊢ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
| 17 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 18 | 16, 17 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ) |
| 19 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
| 20 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑥 |
| 21 | | nfii1 4551 |
. . . . . . . . 9
⊢
Ⅎ𝑛∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) |
| 22 | 20, 21 | nfel 2777 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) |
| 23 | 19, 22 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 24 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑) |
| 25 | | iinss2 4572 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 26 | 25 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 27 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 28 | 26, 27 | sseldd 3604 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 29 | 28 | adantll 750 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 30 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 31 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 32 | 31 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 33 | | elioore 12205 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ) |
| 34 | 33 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 35 | | nnrecre 11057 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
| 36 | 35 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
| 37 | 34, 36 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ) |
| 38 | 37 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ) |
| 39 | 35 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
| 40 | 31, 39 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ) |
| 41 | 40 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈
ℝ*) |
| 42 | 41 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈
ℝ*) |
| 43 | 3 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 44 | 43, 39 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
| 45 | 44 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
| 46 | 45 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
| 47 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 48 | | ioogtlb 39717 |
. . . . . . . . . . . 12
⊢ (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 − (1 / 𝑛)) < 𝑥) |
| 49 | 42, 46, 47, 48 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝑥) |
| 50 | 35 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
| 51 | 34 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 52 | 32, 50, 51 | ltsubaddd 10623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) < 𝑥 ↔ 𝐴 < (𝑥 + (1 / 𝑛)))) |
| 53 | 49, 52 | mpbid 222 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝑥 + (1 / 𝑛))) |
| 54 | 32, 38, 53 | ltled 10185 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
| 55 | 24, 29, 30, 54 | syl21anc 1325 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
| 56 | 55 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝑥 + (1 / 𝑛)))) |
| 57 | 23, 56 | ralrimi 2957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
| 58 | 2 | rexrd 10089 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈
ℝ*) |
| 59 | 23, 58, 18 | xrralrecnnle 39602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛)))) |
| 60 | 57, 59 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ≤ 𝑥) |
| 61 | 44 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
| 62 | | iooltub 39735 |
. . . . . . . . . . 11
⊢ (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛))) |
| 63 | 42, 46, 47, 62 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛))) |
| 64 | 51, 61, 63 | ltled 10185 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
| 65 | 24, 29, 30, 64 | syl21anc 1325 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
| 66 | 65 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
| 67 | 23, 66 | ralrimi 2957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
| 68 | 18 | rexrd 10089 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*) |
| 69 | 23, 68, 4 | xrralrecnnle 39602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑥 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
| 70 | 67, 69 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ≤ 𝐵) |
| 71 | 2, 4, 18, 60, 70 | eliccd 39726 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 72 | 71 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵)) |
| 73 | | dfss3 3592 |
. . 3
⊢ (∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵) ↔ ∀𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵)) |
| 74 | 72, 73 | sylibr 224 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵)) |
| 75 | | 1rp 11836 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 76 | 75 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ+) |
| 77 | | nnrp 11842 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
| 78 | 76, 77 | rpdivcld 11889 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
| 79 | 78 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ+) |
| 80 | 31, 79 | ltsubrpd 11904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴) |
| 81 | 43, 79 | ltaddrpd 11905 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛))) |
| 82 | | iccssioo 12242 |
. . . . 5
⊢ ((((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ ((𝐴 − (1 / 𝑛)) < 𝐴 ∧ 𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 83 | 41, 45, 80, 81, 82 | syl22anc 1327 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 84 | 83 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 85 | | ssiin 4570 |
. . 3
⊢ ((𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 86 | 84, 85 | sylibr 224 |
. 2
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
| 87 | 74, 86 | eqssd 3620 |
1
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵)) |