![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ioombl1 23330. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
Ref | Expression |
---|---|
ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2622 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
4 | 2, 3 | ovolsf 23241 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
6 | frn 6053 | . . . . 5 ⊢ (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
8 | icossxr 12258 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
9 | 7, 8 | syl6ss 3615 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
10 | supxrcl 12145 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
12 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
13 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
14 | 13 | rpred 11872 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
15 | 12, 14 | readdcld 10069 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
16 | mnfxr 10096 | . . . 4 ⊢ -∞ ∈ ℝ* | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
18 | ffn 6045 | . . . . . 6 ⊢ (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ) | |
19 | 5, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
20 | 1nn 11031 | . . . . 5 ⊢ 1 ∈ ℕ | |
21 | fnfvelrn 6356 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
22 | 19, 20, 21 | sylancl 694 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
23 | 9, 22 | sseldd 3604 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
24 | rge0ssre 12280 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
25 | ffvelrn 6357 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
26 | 5, 20, 25 | sylancl 694 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
27 | 24, 26 | sseldi 3601 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
28 | mnflt 11957 | . . . 4 ⊢ ((𝑆‘1) ∈ ℝ → -∞ < (𝑆‘1)) | |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
30 | supxrub 12154 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
31 | 9, 22, 30 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
32 | 17, 23, 11, 29, 31 | xrltletrd 11992 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
33 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
34 | xrre 12000 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
35 | 11, 15, 32, 33, 34 | syl22anc 1327 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 ifcif 4086 〈cop 4183 ∪ cuni 4436 class class class wbr 4653 ↦ cmpt 4729 × cxp 5112 ran crn 5115 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 supcsup 8346 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 +∞cpnf 10071 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 ℝ+crp 11832 (,)cioo 12175 [,)cico 12177 seqcseq 12801 abscabs 13974 vol*covol 23231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
This theorem is referenced by: ioombl1lem4 23329 |
Copyright terms: Public domain | W3C validator |