| Step | Hyp | Ref
| Expression |
| 1 | | elxr 11950 |
. 2
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
| 2 | | ioossre 12235 |
. . . . 5
⊢ (𝐴(,)+∞) ⊆
ℝ |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆
ℝ) |
| 4 | | elpwi 4168 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 ℝ →
𝑥 ⊆
ℝ) |
| 5 | | simplrl 800 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → 𝑥 ⊆ ℝ) |
| 6 | | simplrr 801 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → (vol*‘𝑥) ∈ ℝ) |
| 7 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → 𝑦 ∈ ℝ+) |
| 8 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
| 9 | 8 | ovolgelb 23248 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ ∧ 𝑦 ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦))) |
| 10 | 5, 6, 7, 9 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦))) |
| 11 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝐴(,)+∞) = (𝐴(,)+∞) |
| 12 | | simplll 798 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ) |
| 13 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ) |
| 14 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈
ℝ) |
| 15 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+) |
| 16 | | eqid 2622 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉))) = seq1( + , ((abs ∘ −
) ∘ (𝑚 ∈ ℕ
↦ 〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉))) |
| 17 | | eqid 2622 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ 〈(1st
‘(𝑓‘𝑚)), if(if((1st
‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉))) = seq1( + , ((abs ∘
− ) ∘ (𝑚 ∈
ℕ ↦ 〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉))) |
| 18 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)) |
| 19 | | reex 10027 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
| 20 | 19, 19 | xpex 6962 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V |
| 21 | 20 | inex2 4800 |
. . . . . . . . . . . . 13
⊢ ( ≤
∩ (ℝ × ℝ)) ∈ V |
| 22 | | nnex 11026 |
. . . . . . . . . . . . 13
⊢ ℕ
∈ V |
| 23 | 21, 22 | elmap 7886 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 24 | 18, 23 | sylib 208 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 25 | | simprrl 804 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 26 | | simprrr 805 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)) |
| 27 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(1st ‘(𝑓‘𝑛)) = (1st ‘(𝑓‘𝑛)) |
| 28 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(2nd ‘(𝑓‘𝑛)) = (2nd ‘(𝑓‘𝑛)) |
| 29 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑓‘𝑚) = (𝑓‘𝑛)) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (1st ‘(𝑓‘𝑚)) = (1st ‘(𝑓‘𝑛))) |
| 31 | 30 | breq1d 4663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → ((1st ‘(𝑓‘𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓‘𝑛)) ≤ 𝐴)) |
| 32 | 31, 30 | ifbieq2d 4111 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) = if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛)))) |
| 33 | 29 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘𝑚)) = (2nd ‘(𝑓‘𝑛))) |
| 34 | 32, 33 | breq12d 4666 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)) ↔ if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)))) |
| 35 | 34, 32, 33 | ifbieq12d 4113 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))) = if(if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))) |
| 36 | 35, 33 | opeq12d 4410 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 〈if(if((1st
‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉 = 〈if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))〉) |
| 37 | 36 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉) = (𝑛 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))〉) |
| 38 | 30, 35 | opeq12d 4410 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉 = 〈(1st
‘(𝑓‘𝑛)), if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))〉) |
| 39 | 38 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ ↦
〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉) = (𝑛 ∈ ℕ ↦ 〈(1st
‘(𝑓‘𝑛)), if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))〉) |
| 40 | 11, 12, 13, 14, 15, 8, 16, 17, 24, 25, 26, 27, 28, 37, 39 | ioombl1lem4 23329 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
| 41 | 10, 40 | rexlimddv 3035 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
| 42 | 41 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ∀𝑦
∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
| 43 | | inss1 3833 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥 |
| 44 | | ovolsscl 23254 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
| 45 | 43, 44 | mp3an1 1411 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
| 46 | 45 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
| 47 | | difss 3737 |
. . . . . . . . . . . 12
⊢ (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥 |
| 48 | | ovolsscl 23254 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∖
(𝐴(,)+∞))) ∈
ℝ) |
| 49 | 47, 48 | mp3an1 1411 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈
ℝ) |
| 50 | 49 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈
ℝ) |
| 51 | 46, 50 | readdcld 10069 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈
ℝ) |
| 52 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘𝑥) ∈ ℝ) |
| 53 | | alrple 12037 |
. . . . . . . . 9
⊢
((((vol*‘(𝑥
∩ (𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ∈
ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
((vol*‘𝑥) + 𝑦))) |
| 54 | 51, 52, 53 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
((vol*‘𝑥) + 𝑦))) |
| 55 | 42, 54 | mpbird 247 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)) |
| 56 | 55 | expr 643 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) →
((vol*‘𝑥) ∈
ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
| 57 | 4, 56 | sylan2 491 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ)
→ ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
| 58 | 57 | ralrimiva 2966 |
. . . 4
⊢ (𝐴 ∈ ℝ →
∀𝑥 ∈ 𝒫
ℝ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
| 59 | | ismbl2 23295 |
. . . 4
⊢ ((𝐴(,)+∞) ∈ dom vol
↔ ((𝐴(,)+∞)
⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ →
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
(vol*‘𝑥)))) |
| 60 | 3, 58, 59 | sylanbrc 698 |
. . 3
⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom
vol) |
| 61 | | oveq1 6657 |
. . . . 5
⊢ (𝐴 = +∞ → (𝐴(,)+∞) =
(+∞(,)+∞)) |
| 62 | | iooid 12203 |
. . . . 5
⊢
(+∞(,)+∞) = ∅ |
| 63 | 61, 62 | syl6eq 2672 |
. . . 4
⊢ (𝐴 = +∞ → (𝐴(,)+∞) =
∅) |
| 64 | | 0mbl 23307 |
. . . 4
⊢ ∅
∈ dom vol |
| 65 | 63, 64 | syl6eqel 2709 |
. . 3
⊢ (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom
vol) |
| 66 | | oveq1 6657 |
. . . . 5
⊢ (𝐴 = -∞ → (𝐴(,)+∞) =
(-∞(,)+∞)) |
| 67 | | ioomax 12248 |
. . . . 5
⊢
(-∞(,)+∞) = ℝ |
| 68 | 66, 67 | syl6eq 2672 |
. . . 4
⊢ (𝐴 = -∞ → (𝐴(,)+∞) =
ℝ) |
| 69 | | rembl 23308 |
. . . 4
⊢ ℝ
∈ dom vol |
| 70 | 68, 69 | syl6eqel 2709 |
. . 3
⊢ (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom
vol) |
| 71 | 60, 65, 70 | 3jaoi 1391 |
. 2
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom
vol) |
| 72 | 1, 71 | sylbi 207 |
1
⊢ (𝐴 ∈ ℝ*
→ (𝐴(,)+∞)
∈ dom vol) |