MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem2 Structured version   Visualization version   GIF version

Theorem tchcphlem2 23035
Description: Lemma for tchcph 23036: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchcph.v 𝑉 = (Base‘𝑊)
tchcph.f 𝐹 = (Scalar‘𝑊)
tchcph.1 (𝜑𝑊 ∈ PreHil)
tchcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tchcph.h , = (·𝑖𝑊)
tchcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tchcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tchcph.k 𝐾 = (Base‘𝐹)
tchcph.s · = ( ·𝑠𝑊)
tchcphlem2.3 (𝜑𝑋𝐾)
tchcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tchcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tchcphlem2
StepHypRef Expression
1 tchval.n . . . . . . 7 𝐺 = (toℂHil‘𝑊)
2 tchcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tchcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tchcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tchcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5tchclm 23031 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tchcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 22879 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tchcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3604 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 13946 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 13948 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tchcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tchcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tchcphlem3 23032 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 702 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 tchcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1918ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
20 oveq12 6659 . . . . . . 7 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2120anidms 677 . . . . . 6 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2221breq2d 4665 . . . . 5 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
2322rspcv 3305 . . . 4 (𝑌𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑌 , 𝑌)))
2414, 19, 23sylc 65 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2512, 13, 17, 24sqrtmuld 14163 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
26 phllmod 19975 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
274, 26syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
28 tchcph.s . . . . . . 7 · = ( ·𝑠𝑊)
292, 3, 28, 7lmodvscl 18880 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
3027, 10, 14, 29syl3anc 1326 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
31 eqid 2622 . . . . . 6 (.r𝐹) = (.r𝐹)
32 eqid 2622 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
333, 15, 2, 7, 28, 31, 32ipassr 19991 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
344, 30, 14, 10, 33syl13anc 1328 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
353clmmul 22875 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
366, 35syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3736oveqd 6667 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
383, 15, 2, 7, 28, 31ipass 19990 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
394, 10, 14, 14, 38syl13anc 1328 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
4037, 39eqtr4d 2659 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
413clmcj 22876 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
426, 41syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4342fveq1d 6193 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4436, 40, 43oveq123d 6671 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4517recnd 10068 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4611cjcld 13936 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4711, 45, 46mul32d 10246 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4834, 44, 473eqtr2d 2662 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4948fveq2d 6195 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
50 absval 13978 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5111, 50syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5251oveq1d 6665 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5325, 49, 523eqtr4d 2666 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  cle 10075  ccj 13836  csqrt 13973  abscabs 13974  Basecbs 15857  s cress 15858  .rcmulr 15942  *𝑟cstv 15943  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  LModclmod 18863  fldccnfld 19746  PreHilcphl 19969  ℂModcclm 22862  toℂHilctch 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-phl 19971  df-clm 22863
This theorem is referenced by:  tchcph  23036
  Copyright terms: Public domain W3C validator