MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau2 Structured version   Visualization version   GIF version

Theorem ipcau2 23033
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchcph.v 𝑉 = (Base‘𝑊)
tchcph.f 𝐹 = (Scalar‘𝑊)
tchcph.1 (𝜑𝑊 ∈ PreHil)
tchcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tchcph.h , = (·𝑖𝑊)
tchcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tchcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tchcph.k 𝐾 = (Base‘𝐹)
ipcau2.n 𝑁 = (norm‘𝐺)
ipcau2.c 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
ipcau2.3 (𝜑𝑋𝑉)
ipcau2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
ipcau2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝐶   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐾(𝑥)   𝑁(𝑥)

Proof of Theorem ipcau2
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 (𝑌 = (0g𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g𝑊)))
21oveq1d 6665 . . . . . 6 (𝑌 = (0g𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)))
32breq1d 4663 . . . . 5 (𝑌 = (0g𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
4 tchval.n . . . . . . . . . . . . 13 𝐺 = (toℂHil‘𝑊)
5 tchcph.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑊)
6 tchcph.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
7 tchcph.1 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ PreHil)
8 tchcph.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (ℂflds 𝐾))
94, 5, 6, 7, 8tchclm 23031 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℂMod)
10 tchcph.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
116, 10clmsscn 22879 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
129, 11syl 17 . . . . . . . . . . 11 (𝜑𝐾 ⊆ ℂ)
13 ipcau2.3 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
14 ipcau2.4 . . . . . . . . . . . 12 (𝜑𝑌𝑉)
15 tchcph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
166, 15, 5, 10ipcl 19978 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
177, 13, 14, 16syl3anc 1326 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
1812, 17sseldd 3604 . . . . . . . . . 10 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
1918adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ ℂ)
206, 15, 5, 10ipcl 19978 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
217, 14, 13, 20syl3anc 1326 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
2212, 21sseldd 3604 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
2322adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ ℂ)
244, 5, 6, 7, 8, 15tchcphlem3 23032 . . . . . . . . . . . 12 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
2514, 24mpdan 702 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2625recnd 10068 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
2726adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℂ)
286clm0 22872 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
299, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 = (0g𝐹))
3029eqeq2d 2632 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g𝐹)))
31 eqid 2622 . . . . . . . . . . . . . 14 (0g𝐹) = (0g𝐹)
32 eqid 2622 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
336, 15, 5, 31, 32ipeq0 19983 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑌𝑉) → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
347, 14, 33syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
3530, 34bitrd 268 . . . . . . . . . . 11 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g𝑊)))
3635necon3bid 2838 . . . . . . . . . 10 (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g𝑊)))
3736biimpar 502 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ≠ 0)
3819, 23, 27, 37divassd 10836 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))))
39 ipcau2.c . . . . . . . . 9 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
4039oveq2i 6661 . . . . . . . 8 ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4138, 40syl6eqr 2674 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶))
42 phllmod 19975 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
437, 42syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
4443adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
4513adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑋𝑉)
4639fveq2i 6194 . . . . . . . . . . . . . . 15 (∗‘𝐶) = (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4723, 27, 37cjdivd 13963 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
4846, 47syl5eq 2668 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
498fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
50 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝐹) ∈ V
5110, 50eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
52 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (ℂflds 𝐾) = (ℂflds 𝐾)
53 cnfldcj 19753 . . . . . . . . . . . . . . . . . . . . . . 23 ∗ = (*𝑟‘ℂfld)
5452, 53ressstarv 16007 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
5551, 54ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∗ = (*𝑟‘(ℂflds 𝐾))
5649, 55syl6eqr 2674 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (*𝑟𝐹) = ∗)
5756fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌)))
58 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (*𝑟𝐹) = (*𝑟𝐹)
596, 15, 5, 58ipcj 19979 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
607, 13, 14, 59syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6157, 60eqtr3d 2658 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6261adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6362fveq2d 6195 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋)))
6419cjcjd 13939 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌))
6563, 64eqtr3d 2658 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌))
6625adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℝ)
6766cjred 13966 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌))
6865, 67oveq12d 6668 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌)))
6919, 27, 37divrecd 10804 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
7048, 68, 693eqtrd 2660 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
719adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ ℂMod)
7217adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ 𝐾)
736, 15, 5, 10ipcl 19978 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
747, 14, 14, 73syl3anc 1326 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7574adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ 𝐾)
768adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 = (ℂflds 𝐾))
77 phllvec 19974 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
787, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ LVec)
796lvecdrng 19105 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ DivRing)
8180adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 ∈ DivRing)
8210, 76, 81cphreccllem 22978 . . . . . . . . . . . . . . 15 (((𝜑𝑌 ≠ (0g𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
8375, 37, 82mpd3an23 1426 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
846, 10clmmcl 22885 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
8571, 72, 83, 84syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
8670, 85eqeltrd 2701 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) ∈ 𝐾)
8714adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑌𝑉)
88 eqid 2622 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
895, 6, 88, 10lmodvscl 18880 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (∗‘𝐶) ∈ 𝐾𝑌𝑉) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
9044, 86, 87, 89syl3anc 1326 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
91 eqid 2622 . . . . . . . . . . . 12 (-g𝑊) = (-g𝑊)
925, 91lmodvsubcl 18908 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9344, 45, 90, 92syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
94 tchcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
9594ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
9695adantr 481 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
97 oveq12 6659 . . . . . . . . . . . . 13 ((𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
9897anidms 677 . . . . . . . . . . . 12 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
9998breq2d 4665 . . . . . . . . . . 11 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
10099rspcv 3305 . . . . . . . . . 10 ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
10193, 96, 100sylc 65 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
102 eqid 2622 . . . . . . . . . . 11 (-g𝐹) = (-g𝐹)
103 eqid 2622 . . . . . . . . . . 11 (+g𝐹) = (+g𝐹)
1047adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ PreHil)
1056, 15, 5, 91, 102, 103, 104, 45, 90, 45, 90ip2subdi 19989 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))))
10676fveq2d 6195 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = (+g‘(ℂflds 𝐾)))
107 cnfldadd 19751 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
10852, 107ressplusg 15993 . . . . . . . . . . . . . 14 (𝐾 ∈ V → + = (+g‘(ℂflds 𝐾)))
10951, 108ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(ℂflds 𝐾))
110106, 109syl6eqr 2674 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = + )
111 eqidd 2623 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋))
112 eqid 2622 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
1136, 15, 5, 10, 88, 112ipass 19990 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
114104, 86, 87, 90, 113syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
11576fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = (.r‘(ℂflds 𝐾)))
116 cnfldmul 19752 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
11752, 116ressmulr 16006 . . . . . . . . . . . . . . . 16 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
11851, 117ax-mp 5 . . . . . . . . . . . . . . 15 · = (.r‘(ℂflds 𝐾))
119115, 118syl6eqr 2674 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = · )
120 eqidd 2623 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = (∗‘𝐶))
12123, 27, 37divrecd 10804 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12239, 121syl5eq 2668 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12321adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ 𝐾)
1246, 10clmmcl 22885 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
12571, 123, 83, 124syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
126122, 125eqeltrd 2701 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶𝐾)
1276, 15, 5, 10, 88, 112, 58ipassr2 19992 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ (𝑌𝑉𝑌𝑉𝐶𝐾)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
128104, 87, 87, 126, 127syl13anc 1328 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
129119oveqd 6667 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶))
13039oveq2i 6661 . . . . . . . . . . . . . . . . 17 ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
13123, 27, 37divcan2d 10803 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋))
132130, 131syl5eq 2668 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋))
133129, 132eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , 𝑋))
13456adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (*𝑟𝐹) = ∗)
135134fveq1d 6193 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((*𝑟𝐹)‘𝐶) = (∗‘𝐶))
136135oveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌) = ((∗‘𝐶)( ·𝑠𝑊)𝑌))
137136oveq2d 6666 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
138128, 133, 1373eqtr3rd 2665 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , 𝑋))
139119, 120, 138oveq123d 6671 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋)))
140114, 139eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
141110, 111, 140oveq123d 6671 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))))
1426, 15, 5, 10, 88, 112, 58ipassr2 19992 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ (𝑋𝑉𝑌𝑉𝐶𝐾)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
143104, 45, 87, 126, 142syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
144119oveqd 6667 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶))
145136oveq2d 6666 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
146143, 144, 1453eqtr3rd 2665 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶))
1476, 15, 5, 10, 88, 112ipass 19990 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉𝑋𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
148104, 86, 87, 45, 147syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
149119oveqd 6667 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
150148, 149eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋)))
151110, 146, 150oveq123d 6671 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))
152141, 151oveq12d 6668 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1536, 15, 5, 10ipcl 19978 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
154104, 45, 45, 153syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ 𝐾)
1556, 10clmmcl 22885 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (∗‘𝐶) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
15671, 86, 123, 155syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
1576, 10clmacl 22884 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
15871, 154, 156, 157syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1596, 10clmmcl 22885 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾𝐶𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
16071, 72, 126, 159syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
1616, 10clmacl 22884 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
16271, 160, 156, 161syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1636, 10clmsub 22880 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
16471, 158, 162, 163syl3anc 1326 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1654, 5, 6, 7, 8, 15tchcphlem3 23032 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
16613, 165mpdan 702 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
167166recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
168167adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℂ)
16918absvalsqd 14181 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))))
17061oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
171169, 170eqtrd 2656 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
17218abscld 14175 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
173172resqcld 13035 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ)
174171, 173eqeltrrd 2702 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
175174adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
176175, 66, 37redivcld 10853 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ)
17741, 176eqeltrrd 2702 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ)
178177recnd 10068 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ)
17971, 11syl 17 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐾 ⊆ ℂ)
180179, 156sseldd 3604 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ)
181168, 178, 180pnpcan2d 10430 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
182164, 181eqtr3d 2658 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
183105, 152, 1823eqtrd 2660 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
184101, 183breqtrd 4679 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
185166adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℝ)
186185, 177subge0d 10617 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)))
187184, 186mpbid 222 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))
18841, 187eqbrtrd 4675 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋))
189 oveq12 6659 . . . . . . . . . . . . 13 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
190189anidms 677 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
191190breq2d 4665 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
192191rspcv 3305 . . . . . . . . . 10 (𝑌𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑌 , 𝑌)))
19314, 95, 192sylc 65 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑌 , 𝑌))
194193adantr 481 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ (𝑌 , 𝑌))
19566, 194, 37ne0gt0d 10174 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → 0 < (𝑌 , 𝑌))
196 ledivmul2 10902 . . . . . . 7 ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
197175, 185, 66, 195, 196syl112anc 1330 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
198188, 197mpbid 222 . . . . 5 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
1996, 15, 5, 31, 32ip0r 19982 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , (0g𝑊)) = (0g𝐹))
2007, 13, 199syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑋 , (0g𝑊)) = (0g𝐹))
201200, 29eqtr4d 2659 . . . . . . . 8 (𝜑 → (𝑋 , (0g𝑊)) = 0)
202201oveq1d 6665 . . . . . . 7 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋)))
20322mul02d 10234 . . . . . . 7 (𝜑 → (0 · (𝑌 , 𝑋)) = 0)
204202, 203eqtrd 2656 . . . . . 6 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = 0)
205 oveq12 6659 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
206205anidms 677 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
207206breq2d 4665 . . . . . . . . 9 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
208207rspcv 3305 . . . . . . . 8 (𝑋𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑋 , 𝑋)))
20913, 95, 208sylc 65 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 , 𝑋))
210166, 25, 209, 193mulge0d 10604 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
211204, 210eqbrtrd 4675 . . . . 5 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
2123, 198, 211pm2.61ne 2879 . . . 4 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
213166, 209resqrtcld 14156 . . . . . . 7 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
214213recnd 10068 . . . . . 6 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
21525, 193resqrtcld 14156 . . . . . . 7 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
216215recnd 10068 . . . . . 6 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
217214, 216sqmuld 13020 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)))
218167sqsqrtd 14178 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
21926sqsqrtd 14178 . . . . . 6 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
220218, 219oveq12d 6668 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
221217, 220eqtrd 2656 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
222212, 171, 2213brtr4d 4685 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))
223213, 215remulcld 10070 . . . 4 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
22418absge0d 14183 . . . 4 (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌)))
225166, 209sqrtge0d 14159 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
22625, 193sqrtge0d 14159 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
227213, 215, 225, 226mulge0d 10604 . . . 4 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
228172, 223, 224, 227le2sqd 13044 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)))
229222, 228mpbird 247 . 2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
230 lmodgrp 18870 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
23143, 230syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
232 ipcau2.n . . . . 5 𝑁 = (norm‘𝐺)
2334, 232, 5, 15tchnmval 23028 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
234231, 13, 233syl2anc 693 . . 3 (𝜑 → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
2354, 232, 5, 15tchnmval 23028 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
236231, 14, 235syl2anc 693 . . 3 (𝜑 → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
237234, 236oveq12d 6668 . 2 (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
238229, 237breqtrrd 4681 1 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  cexp 12860  ccj 13836  csqrt 13973  abscabs 13974  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  *𝑟cstv 15943  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  DivRingcdr 18747  LModclmod 18863  LVecclvec 19102  fldccnfld 19746  PreHilcphl 19969  normcnm 22381  ℂModcclm 22862  toℂHilctch 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-phl 19971  df-nm 22387  df-tng 22389  df-clm 22863  df-tch 22969
This theorem is referenced by:  tchcphlem1  23034  ipcau  23037
  Copyright terms: Public domain W3C validator