MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem2 Structured version   Visualization version   GIF version

Theorem ipasslem2 27687
Description: Lemma for ipassi 27696. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem2 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem2
StepHypRef Expression
1 nn0cn 11302 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21negcld 10379 . . . 4 (𝑁 ∈ ℕ0 → -𝑁 ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 27671 . . . . 5 𝑈 ∈ NrmCVec
5 ipasslem1.b . . . . 5 𝐵𝑋
6 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
7 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
86, 7dipcl 27567 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
94, 5, 8mp3an13 1415 . . . 4 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
10 mulcl 10020 . . . 4 ((-𝑁 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
112, 9, 10syl2an 494 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
12 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
136, 12nvscl 27481 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
144, 13mp3an1 1411 . . . . 5 ((-𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
152, 14sylan 488 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
166, 7dipcl 27567 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-𝑁𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
174, 5, 16mp3an13 1415 . . . 4 ((-𝑁𝑆𝐴) ∈ 𝑋 → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
1815, 17syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
19 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
20 mulneg2 10467 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · -1) = -(𝑁 · 1))
2119, 20mpan2 707 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 · -1) = -(𝑁 · 1))
22 mulid1 10037 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 · 1) = 𝑁)
2322negeqd 10275 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → -(𝑁 · 1) = -𝑁)
2421, 23eqtr2d 2657 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -𝑁 = (𝑁 · -1))
2524adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → -𝑁 = (𝑁 · -1))
2625oveq1d 6665 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = ((𝑁 · -1)𝑆𝐴))
27 neg1cn 11124 . . . . . . . . . 10 -1 ∈ ℂ
286, 12nvsass 27483 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
294, 28mpan 706 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3027, 29mp3an2 1412 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3126, 30eqtrd 2656 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
321, 31sylan 488 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3332oveq1d 6665 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵))
346, 12nvscl 27481 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
354, 27, 34mp3an12 1414 . . . . . . 7 (𝐴𝑋 → (-1𝑆𝐴) ∈ 𝑋)
36 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
376, 36, 12, 7, 3, 5ipasslem1 27686 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3835, 37sylan2 491 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3933, 38eqtrd 2656 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4039oveq2d 6666 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
416, 7dipcl 27567 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
424, 5, 41mp3an13 1415 . . . . . . 7 ((-1𝑆𝐴) ∈ 𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
4335, 42syl 17 . . . . . 6 (𝐴𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
44 mulcl 10020 . . . . . 6 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
451, 43, 44syl2an 494 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
4611, 45negsubd 10398 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
47 mulneg1 10466 . . . . . . 7 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
481, 43, 47syl2an 494 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4948oveq2d 6666 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
502adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → -𝑁 ∈ ℂ)
519adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
5243adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
5350, 51, 52adddid 10064 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
546, 36, 12, 7, 3ipdiri 27685 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
555, 54mp3an3 1413 . . . . . . . . . 10 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
5635, 55mpdan 702 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
57 eqid 2622 . . . . . . . . . . . . 13 (0vec𝑈) = (0vec𝑈)
586, 36, 12, 57nvrinv 27506 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
594, 58mpan 706 . . . . . . . . . . 11 (𝐴𝑋 → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
6059oveq1d 6665 . . . . . . . . . 10 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
616, 57, 7dip0l 27573 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
624, 5, 61mp2an 708 . . . . . . . . . 10 ((0vec𝑈)𝑃𝐵) = 0
6360, 62syl6eq 2672 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0)
6456, 63eqtr3d 2658 . . . . . . . 8 (𝐴𝑋 → ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)) = 0)
6564oveq2d 6666 . . . . . . 7 (𝐴𝑋 → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = (-𝑁 · 0))
662mul01d 10235 . . . . . . 7 (𝑁 ∈ ℕ0 → (-𝑁 · 0) = 0)
6765, 66sylan9eqr 2678 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = 0)
6853, 67eqtr3d 2658 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
6949, 68eqtr3d 2658 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
7040, 46, 693eqtr2d 2662 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = 0)
7111, 18, 70subeq0d 10400 . 2 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) = ((-𝑁𝑆𝐴)𝑃𝐵))
7271eqcomd 2628 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  0cn0 11292  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443  ·𝑖OLDcdip 27555  CPreHilOLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-dip 27556  df-ph 27668
This theorem is referenced by:  ipasslem3  27688
  Copyright terms: Public domain W3C validator