MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim3 Structured version   Visualization version   GIF version

Theorem iprodclim3 14731
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim3.1 𝑍 = (ℤ𝑀)
iprodclim3.2 (𝜑𝑀 ∈ ℤ)
iprodclim3.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
iprodclim3.4 (𝜑𝐹 ∈ dom ⇝ )
iprodclim3.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodclim3.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
iprodclim3 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝐴,𝑛,𝑦   𝑗,𝐹   𝑗,𝑘,𝜑   𝑘,𝑛,𝜑,𝑦   𝑗,𝑀   𝑦,𝑀   𝜑,𝑛,𝑦   𝑗,𝑍,𝑘   𝑛,𝑍,𝑦   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑦,𝑘,𝑛)   𝑀(𝑛)

Proof of Theorem iprodclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodclim3.4 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 14285 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 208 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 prodfc 14675 . . . 4 𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ∏𝑘𝑍 𝐴
5 iprodclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 iprodclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 iprodclim3.3 . . . . 5 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
8 eqidd 2623 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
9 iprodclim3.5 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
10 eqid 2622 . . . . . . 7 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
119, 10fmptd 6385 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
1211ffvelrnda 6359 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
135, 6, 7, 8, 12iprod 14668 . . . 4 (𝜑 → ∏𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
144, 13syl5eqr 2670 . . 3 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
15 seqex 12803 . . . . . . 7 seq𝑀( · , (𝑘𝑍𝐴)) ∈ V
1615a1i 11 . . . . . 6 (𝜑 → seq𝑀( · , (𝑘𝑍𝐴)) ∈ V)
17 iprodclim3.6 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
18 fzssuz 12382 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 5sseqtr4i 3638 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 5449 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 6192 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
23 fvres 6207 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2422, 23syl5reqr 2671 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2524prodeq2i 14649 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
26 prodfc 14675 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
2725, 26eqtri 2644 . . . . . . . 8 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
28 eqidd 2623 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
29 simpr 477 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 5syl6eleq 2711 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 elfzuz 12338 . . . . . . . . . . . 12 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3231, 5syl6eleqr 2712 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3332, 12sylan2 491 . . . . . . . . . 10 ((𝜑𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3433adantlr 751 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3528, 30, 34fprodser 14679 . . . . . . . 8 ((𝜑𝑗𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3627, 35syl5eqr 2670 . . . . . . 7 ((𝜑𝑗𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3717, 36eqtr2d 2657 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
385, 16, 1, 6, 37climeq 14298 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3938iotabidv 5872 . . . 4 (𝜑 → (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
40 df-fv 5896 . . . 4 ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥)
41 df-fv 5896 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4239, 40, 413eqtr4g 2681 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4314, 42eqtrd 2656 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
443, 43breqtrrd 4681 1 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  cres 5116  cio 5849  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   · cmul 9941  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator