MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim3 Structured version   Visualization version   Unicode version

Theorem iprodclim3 14731
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that  j must not occur in  A. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim3.1  |-  Z  =  ( ZZ>= `  M )
iprodclim3.2  |-  ( ph  ->  M  e.  ZZ )
iprodclim3.3  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  Z  |->  A ) )  ~~>  y ) )
iprodclim3.4  |-  ( ph  ->  F  e.  dom  ~~>  )
iprodclim3.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
iprodclim3.6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  prod_ k  e.  ( M ... j ) A )
Assertion
Ref Expression
iprodclim3  |-  ( ph  ->  F  ~~>  prod_ k  e.  Z  A )
Distinct variable groups:    A, j    A, n, y    j, F   
j, k, ph    k, n,
ph, y    j, M    y, M    ph, n, y    j, Z, k    n, Z, y   
k, M
Allowed substitution hints:    A( k)    F( y, k, n)    M( n)

Proof of Theorem iprodclim3
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodclim3.4 . . 3  |-  ( ph  ->  F  e.  dom  ~~>  )
2 climdm 14285 . . 3  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
31, 2sylib 208 . 2  |-  ( ph  ->  F  ~~>  (  ~~>  `  F
) )
4 prodfc 14675 . . . 4  |-  prod_ m  e.  Z  ( (
k  e.  Z  |->  A ) `  m )  =  prod_ k  e.  Z  A
5 iprodclim3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
6 iprodclim3.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
7 iprodclim3.3 . . . . 5  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  Z  |->  A ) )  ~~>  y ) )
8 eqidd 2623 . . . . 5  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  Z  |->  A ) `  m ) )
9 iprodclim3.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
10 eqid 2622 . . . . . . 7  |-  ( k  e.  Z  |->  A )  =  ( k  e.  Z  |->  A )
119, 10fmptd 6385 . . . . . 6  |-  ( ph  ->  ( k  e.  Z  |->  A ) : Z --> CC )
1211ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  e.  CC )
135, 6, 7, 8, 12iprod 14668 . . . 4  |-  ( ph  ->  prod_ m  e.  Z  ( ( k  e.  Z  |->  A ) `  m )  =  (  ~~>  `
 seq M (  x.  ,  ( k  e.  Z  |->  A ) ) ) )
144, 13syl5eqr 2670 . . 3  |-  ( ph  ->  prod_ k  e.  Z  A  =  (  ~~>  `  seq M (  x.  , 
( k  e.  Z  |->  A ) ) ) )
15 seqex 12803 . . . . . . 7  |-  seq M
(  x.  ,  ( k  e.  Z  |->  A ) )  e.  _V
1615a1i 11 . . . . . 6  |-  ( ph  ->  seq M (  x.  ,  ( k  e.  Z  |->  A ) )  e.  _V )
17 iprodclim3.6 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  prod_ k  e.  ( M ... j ) A )
18 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( M ... j )  C_  ( ZZ>= `  M )
1918, 5sseqtr4i 3638 . . . . . . . . . . . . 13  |-  ( M ... j )  C_  Z
20 resmpt 5449 . . . . . . . . . . . . 13  |-  ( ( M ... j ) 
C_  Z  ->  (
( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  A ) )
2119, 20ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j ) 
|->  A )
2221fveq1i 6192 . . . . . . . . . . 11  |-  ( ( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `
 m )  =  ( ( k  e.  ( M ... j
)  |->  A ) `  m )
23 fvres 6207 . . . . . . . . . . 11  |-  ( m  e.  ( M ... j )  ->  (
( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `  m )  =  ( ( k  e.  Z  |->  A ) `
 m ) )
2422, 23syl5reqr 2671 . . . . . . . . . 10  |-  ( m  e.  ( M ... j )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  ( M ... j )  |->  A ) `  m ) )
2524prodeq2i 14649 . . . . . . . . 9  |-  prod_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
prod_ m  e.  ( M ... j ) ( ( k  e.  ( M ... j ) 
|->  A ) `  m
)
26 prodfc 14675 . . . . . . . . 9  |-  prod_ m  e.  ( M ... j
) ( ( k  e.  ( M ... j )  |->  A ) `
 m )  = 
prod_ k  e.  ( M ... j ) A
2725, 26eqtri 2644 . . . . . . . 8  |-  prod_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
prod_ k  e.  ( M ... j ) A
28 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( M ... j
) )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  Z  |->  A ) `  m ) )
29 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3029, 5syl6eleq 2711 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
31 elfzuz 12338 . . . . . . . . . . . 12  |-  ( m  e.  ( M ... j )  ->  m  e.  ( ZZ>= `  M )
)
3231, 5syl6eleqr 2712 . . . . . . . . . . 11  |-  ( m  e.  ( M ... j )  ->  m  e.  Z )
3332, 12sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( M ... j ) )  ->  ( (
k  e.  Z  |->  A ) `  m )  e.  CC )
3433adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( M ... j
) )  ->  (
( k  e.  Z  |->  A ) `  m
)  e.  CC )
3528, 30, 34fprodser 14679 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  prod_ m  e.  ( M ... j ) ( ( k  e.  Z  |->  A ) `  m )  =  (  seq M
(  x.  ,  ( k  e.  Z  |->  A ) ) `  j
) )
3627, 35syl5eqr 2670 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  prod_ k  e.  ( M ... j ) A  =  (  seq M (  x.  ,  ( k  e.  Z  |->  A ) ) `  j ) )
3717, 36eqtr2d 2657 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  , 
( k  e.  Z  |->  A ) ) `  j )  =  ( F `  j ) )
385, 16, 1, 6, 37climeq 14298 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  ( k  e.  Z  |->  A ) )  ~~>  x  <->  F  ~~>  x ) )
3938iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota x  seq M (  x.  , 
( k  e.  Z  |->  A ) )  ~~>  x )  =  ( iota x F 
~~>  x ) )
40 df-fv 5896 . . . 4  |-  (  ~~>  `  seq M (  x.  , 
( k  e.  Z  |->  A ) ) )  =  ( iota x  seq M (  x.  , 
( k  e.  Z  |->  A ) )  ~~>  x )
41 df-fv 5896 . . . 4  |-  (  ~~>  `  F
)  =  ( iota
x F  ~~>  x )
4239, 40, 413eqtr4g 2681 . . 3  |-  ( ph  ->  (  ~~>  `  seq M (  x.  ,  ( k  e.  Z  |->  A ) ) )  =  (  ~~>  `
 F ) )
4314, 42eqtrd 2656 . 2  |-  ( ph  ->  prod_ k  e.  Z  A  =  (  ~~>  `  F
) )
443, 43breqtrrd 4681 1  |-  ( ph  ->  F  ~~>  prod_ k  e.  Z  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   iotacio 5849   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator