| Step | Hyp | Ref
| Expression |
| 1 | | iprodefisumlem.1 |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | iprodefisumlem.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | iprodefisumlem.3 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 4 | | fvco3 6275 |
. . . . . 6
⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹‘𝑘))) |
| 5 | 3, 4 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹‘𝑘))) |
| 6 | 3 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 7 | | efcl 14813 |
. . . . . 6
⊢ ((𝐹‘𝑘) ∈ ℂ → (exp‘(𝐹‘𝑘)) ∈ ℂ) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘(𝐹‘𝑘)) ∈ ℂ) |
| 9 | 5, 8 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) ∈ ℂ) |
| 10 | 1, 2, 9 | prodf 14619 |
. . 3
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ) |
| 11 | | ffn 6045 |
. . 3
⊢ (seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍) |
| 12 | 10, 11 | syl 17 |
. 2
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍) |
| 13 | | eff 14812 |
. . . 4
⊢
exp:ℂ⟶ℂ |
| 14 | | ffn 6045 |
. . . 4
⊢
(exp:ℂ⟶ℂ → exp Fn ℂ) |
| 15 | 13, 14 | ax-mp 5 |
. . 3
⊢ exp Fn
ℂ |
| 16 | 1, 2, 6 | serf 12829 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 17 | | fnfco 6069 |
. . 3
⊢ ((exp Fn
ℂ ∧ seq𝑀( + ,
𝐹):𝑍⟶ℂ) → (exp ∘
seq𝑀( + , 𝐹)) Fn 𝑍) |
| 18 | 15, 16, 17 | sylancr 695 |
. 2
⊢ (𝜑 → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍) |
| 19 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑀)) |
| 20 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑀)) |
| 21 | 20 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))) |
| 22 | 19, 21 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))) |
| 23 | 22 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = 𝑀 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))) |
| 24 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑛)) |
| 25 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 26 | 25 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 27 | 24, 26 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑗 = 𝑛 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))) |
| 28 | 27 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = 𝑛 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))))) |
| 29 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = (𝑛 + 1) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1))) |
| 30 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑗 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
| 31 | 30 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑗 = (𝑛 + 1) → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
| 32 | 29, 31 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑗 = (𝑛 + 1) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))) |
| 33 | 32 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
| 34 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑘)) |
| 35 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑘)) |
| 36 | 35 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
| 37 | 34, 36 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
| 38 | 37 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))) |
| 39 | | uzid 11702 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 40 | 2, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 41 | 40, 1 | syl6eleqr 2712 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 42 | | fvco3 6275 |
. . . . . . . . 9
⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑀 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹‘𝑀))) |
| 43 | 3, 41, 42 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹‘𝑀))) |
| 44 | | seq1 12814 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀)) |
| 45 | 2, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀)) |
| 46 | | seq1 12814 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 47 | 2, 46 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 → (exp‘(seq𝑀( + , 𝐹)‘𝑀)) = (exp‘(𝐹‘𝑀))) |
| 49 | 43, 45, 48 | 3eqtr4d 2666 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))) |
| 50 | 49 | a1i 11 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))) |
| 51 | | oveq1 6657 |
. . . . . . . . . . 11
⊢
((seq𝑀( · ,
(exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
| 52 | 51 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
| 53 | 3 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → 𝐹:𝑍⟶ℂ) |
| 54 | | peano2uz 11741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 55 | 54, 1 | syl6eleqr 2712 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈ 𝑍) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (𝑛 + 1) ∈ 𝑍) |
| 57 | | fvco3 6275 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑍⟶ℂ ∧ (𝑛 + 1) ∈ 𝑍) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1)))) |
| 58 | 53, 56, 57 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1)))) |
| 59 | 58 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
| 60 | 16 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 61 | 60 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)) |
| 62 | 1 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) = 𝑍 |
| 63 | 61, 62 | eleq2s 2719 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)) |
| 64 | 63 | imp 445 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 65 | 53, 56 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
| 66 | | efadd 14824 |
. . . . . . . . . . . . 13
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (𝐹‘(𝑛 + 1)) ∈ ℂ) →
(exp‘((seq𝑀( + ,
𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
| 67 | 64, 65, 66 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
| 68 | 59, 67 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 69 | 68 | 3adant3 1081 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 70 | 52, 69 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 71 | | seqp1 12816 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
| 72 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
| 73 | 72 | 3adant3 1081 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
| 74 | | seqp1 12816 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 76 | 75 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 77 | 76 | 3adant3 1081 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 78 | 70, 73, 77 | 3eqtr4d 2666 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
| 79 | 78 | 3exp 1264 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
| 80 | 79 | a2d 29 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
| 81 | 23, 28, 33, 38, 50, 80 | uzind4 11746 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
| 82 | 81, 1 | eleq2s 2719 |
. . . 4
⊢ (𝑘 ∈ 𝑍 → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
| 83 | 82 | impcom 446 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
| 84 | | fvco3 6275 |
. . . 4
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℂ ∧ 𝑘 ∈ 𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
| 85 | 16, 84 | sylan 488 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
| 86 | 83, 85 | eqtr4d 2659 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = ((exp ∘ seq𝑀( + , 𝐹))‘𝑘)) |
| 87 | 12, 18, 86 | eqfnfvd 6314 |
1
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) |