Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   Unicode version

Theorem iprodefisumlem 31626
Description: Lemma for iprodefisum 31627. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1  |-  Z  =  ( ZZ>= `  M )
iprodefisumlem.2  |-  ( ph  ->  M  e.  ZZ )
iprodefisumlem.3  |-  ( ph  ->  F : Z --> CC )
Assertion
Ref Expression
iprodefisumlem  |-  ( ph  ->  seq M (  x.  ,  ( exp  o.  F ) )  =  ( exp  o.  seq M (  +  ,  F ) ) )

Proof of Theorem iprodefisumlem
Dummy variables  j 
k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 iprodefisumlem.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 iprodefisumlem.3 . . . . . 6  |-  ( ph  ->  F : Z --> CC )
4 fvco3 6275 . . . . . 6  |-  ( ( F : Z --> CC  /\  k  e.  Z )  ->  ( ( exp  o.  F ) `  k
)  =  ( exp `  ( F `  k
) ) )
53, 4sylan 488 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( exp  o.  F
) `  k )  =  ( exp `  ( F `  k )
) )
63ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7 efcl 14813 . . . . . 6  |-  ( ( F `  k )  e.  CC  ->  ( exp `  ( F `  k ) )  e.  CC )
86, 7syl 17 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( exp `  ( F `  k ) )  e.  CC )
95, 8eqeltrd 2701 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( exp  o.  F
) `  k )  e.  CC )
101, 2, 9prodf 14619 . . 3  |-  ( ph  ->  seq M (  x.  ,  ( exp  o.  F ) ) : Z --> CC )
11 ffn 6045 . . 3  |-  (  seq M (  x.  , 
( exp  o.  F
) ) : Z --> CC  ->  seq M (  x.  ,  ( exp  o.  F ) )  Fn  Z )
1210, 11syl 17 . 2  |-  ( ph  ->  seq M (  x.  ,  ( exp  o.  F ) )  Fn  Z )
13 eff 14812 . . . 4  |-  exp : CC
--> CC
14 ffn 6045 . . . 4  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
1513, 14ax-mp 5 . . 3  |-  exp  Fn  CC
161, 2, 6serf 12829 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
17 fnfco 6069 . . 3  |-  ( ( exp  Fn  CC  /\  seq M (  +  ,  F ) : Z --> CC )  ->  ( exp 
o.  seq M (  +  ,  F ) )  Fn  Z )
1815, 16, 17sylancr 695 . 2  |-  ( ph  ->  ( exp  o.  seq M (  +  ,  F ) )  Fn  Z )
19 fveq2 6191 . . . . . . . 8  |-  ( j  =  M  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  (  seq M (  x.  , 
( exp  o.  F
) ) `  M
) )
20 fveq2 6191 . . . . . . . . 9  |-  ( j  =  M  ->  (  seq M (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  M
) )
2120fveq2d 6195 . . . . . . . 8  |-  ( j  =  M  ->  ( exp `  (  seq M
(  +  ,  F
) `  j )
)  =  ( exp `  (  seq M (  +  ,  F ) `
 M ) ) )
2219, 21eqeq12d 2637 . . . . . . 7  |-  ( j  =  M  ->  (
(  seq M (  x.  ,  ( exp  o.  F ) ) `  j )  =  ( exp `  (  seq M (  +  ,  F ) `  j
) )  <->  (  seq M (  x.  , 
( exp  o.  F
) ) `  M
)  =  ( exp `  (  seq M (  +  ,  F ) `
 M ) ) ) )
2322imbi2d 330 . . . . . 6  |-  ( j  =  M  ->  (
( ph  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  ( exp `  (  seq M (  +  ,  F ) `
 j ) ) )  <->  ( ph  ->  (  seq M (  x.  ,  ( exp  o.  F ) ) `  M )  =  ( exp `  (  seq M (  +  ,  F ) `  M
) ) ) ) )
24 fveq2 6191 . . . . . . . 8  |-  ( j  =  n  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  (  seq M (  x.  , 
( exp  o.  F
) ) `  n
) )
25 fveq2 6191 . . . . . . . . 9  |-  ( j  =  n  ->  (  seq M (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  n
) )
2625fveq2d 6195 . . . . . . . 8  |-  ( j  =  n  ->  ( exp `  (  seq M
(  +  ,  F
) `  j )
)  =  ( exp `  (  seq M (  +  ,  F ) `
 n ) ) )
2724, 26eqeq12d 2637 . . . . . . 7  |-  ( j  =  n  ->  (
(  seq M (  x.  ,  ( exp  o.  F ) ) `  j )  =  ( exp `  (  seq M (  +  ,  F ) `  j
) )  <->  (  seq M (  x.  , 
( exp  o.  F
) ) `  n
)  =  ( exp `  (  seq M (  +  ,  F ) `
 n ) ) ) )
2827imbi2d 330 . . . . . 6  |-  ( j  =  n  ->  (
( ph  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  ( exp `  (  seq M (  +  ,  F ) `
 j ) ) )  <->  ( ph  ->  (  seq M (  x.  ,  ( exp  o.  F ) ) `  n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) ) ) )
29 fveq2 6191 . . . . . . . 8  |-  ( j  =  ( n  + 
1 )  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  (  seq M (  x.  , 
( exp  o.  F
) ) `  (
n  +  1 ) ) )
30 fveq2 6191 . . . . . . . . 9  |-  ( j  =  ( n  + 
1 )  ->  (  seq M (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  (
n  +  1 ) ) )
3130fveq2d 6195 . . . . . . . 8  |-  ( j  =  ( n  + 
1 )  ->  ( exp `  (  seq M
(  +  ,  F
) `  j )
)  =  ( exp `  (  seq M (  +  ,  F ) `
 ( n  + 
1 ) ) ) )
3229, 31eqeq12d 2637 . . . . . . 7  |-  ( j  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  ( exp  o.  F ) ) `  j )  =  ( exp `  (  seq M (  +  ,  F ) `  j
) )  <->  (  seq M (  x.  , 
( exp  o.  F
) ) `  (
n  +  1 ) )  =  ( exp `  (  seq M (  +  ,  F ) `
 ( n  + 
1 ) ) ) ) )
3332imbi2d 330 . . . . . 6  |-  ( j  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  ( exp `  (  seq M (  +  ,  F ) `
 j ) ) )  <->  ( ph  ->  (  seq M (  x.  ,  ( exp  o.  F ) ) `  ( n  +  1
) )  =  ( exp `  (  seq M (  +  ,  F ) `  (
n  +  1 ) ) ) ) ) )
34 fveq2 6191 . . . . . . . 8  |-  ( j  =  k  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  (  seq M (  x.  , 
( exp  o.  F
) ) `  k
) )
35 fveq2 6191 . . . . . . . . 9  |-  ( j  =  k  ->  (  seq M (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  k
) )
3635fveq2d 6195 . . . . . . . 8  |-  ( j  =  k  ->  ( exp `  (  seq M
(  +  ,  F
) `  j )
)  =  ( exp `  (  seq M (  +  ,  F ) `
 k ) ) )
3734, 36eqeq12d 2637 . . . . . . 7  |-  ( j  =  k  ->  (
(  seq M (  x.  ,  ( exp  o.  F ) ) `  j )  =  ( exp `  (  seq M (  +  ,  F ) `  j
) )  <->  (  seq M (  x.  , 
( exp  o.  F
) ) `  k
)  =  ( exp `  (  seq M (  +  ,  F ) `
 k ) ) ) )
3837imbi2d 330 . . . . . 6  |-  ( j  =  k  ->  (
( ph  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  j
)  =  ( exp `  (  seq M (  +  ,  F ) `
 j ) ) )  <->  ( ph  ->  (  seq M (  x.  ,  ( exp  o.  F ) ) `  k )  =  ( exp `  (  seq M (  +  ,  F ) `  k
) ) ) ) )
39 uzid 11702 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
402, 39syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4140, 1syl6eleqr 2712 . . . . . . . . 9  |-  ( ph  ->  M  e.  Z )
42 fvco3 6275 . . . . . . . . 9  |-  ( ( F : Z --> CC  /\  M  e.  Z )  ->  ( ( exp  o.  F ) `  M
)  =  ( exp `  ( F `  M
) ) )
433, 41, 42syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( exp  o.  F ) `  M
)  =  ( exp `  ( F `  M
) ) )
44 seq1 12814 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  M
)  =  ( ( exp  o.  F ) `
 M ) )
452, 44syl 17 . . . . . . . 8  |-  ( ph  ->  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 M )  =  ( ( exp  o.  F ) `  M
) )
46 seq1 12814 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (  seq M (  +  ,  F ) `  M
)  =  ( F `
 M ) )
472, 46syl 17 . . . . . . . . 9  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 M )  =  ( F `  M
) )
4847fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( exp `  (  seq M (  +  ,  F ) `  M
) )  =  ( exp `  ( F `
 M ) ) )
4943, 45, 483eqtr4d 2666 . . . . . . 7  |-  ( ph  ->  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 M )  =  ( exp `  (  seq M (  +  ,  F ) `  M
) ) )
5049a1i 11 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  x.  ,  ( exp  o.  F ) ) `  M )  =  ( exp `  (  seq M (  +  ,  F ) `  M
) ) ) )
51 oveq1 6657 . . . . . . . . . . 11  |-  ( (  seq M (  x.  ,  ( exp  o.  F ) ) `  n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  ( exp  o.  F ) ) `  n )  x.  (
( exp  o.  F
) `  ( n  +  1 ) ) )  =  ( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  (
( exp  o.  F
) `  ( n  +  1 ) ) ) )
52513ad2ant3 1084 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  ( exp  o.  F ) ) `  n )  x.  ( ( exp 
o.  F ) `  ( n  +  1
) ) )  =  ( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  (
( exp  o.  F
) `  ( n  +  1 ) ) ) )
533adantl 482 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  F : Z --> CC )
54 peano2uz 11741 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
5554, 1syl6eleqr 2712 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
5655adantr 481 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( n  + 
1 )  e.  Z
)
57 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( F : Z --> CC  /\  ( n  +  1
)  e.  Z )  ->  ( ( exp 
o.  F ) `  ( n  +  1
) )  =  ( exp `  ( F `
 ( n  + 
1 ) ) ) )
5853, 56, 57syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( ( exp 
o.  F ) `  ( n  +  1
) )  =  ( exp `  ( F `
 ( n  + 
1 ) ) ) )
5958oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( ( exp `  (  seq M (  +  ,  F ) `
 n ) )  x.  ( ( exp 
o.  F ) `  ( n  +  1
) ) )  =  ( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  ( exp `  ( F `  ( n  +  1
) ) ) ) )
6016ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  CC )
6160expcom 451 . . . . . . . . . . . . . . 15  |-  ( n  e.  Z  ->  ( ph  ->  (  seq M
(  +  ,  F
) `  n )  e.  CC ) )
621eqcomi 2631 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  =  Z
6361, 62eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  +  ,  F ) `
 n )  e.  CC ) )
6463imp 445 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  (  seq M
(  +  ,  F
) `  n )  e.  CC )
6553, 56ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( F `  ( n  +  1
) )  e.  CC )
66 efadd 14824 . . . . . . . . . . . . 13  |-  ( ( (  seq M (  +  ,  F ) `
 n )  e.  CC  /\  ( F `
 ( n  + 
1 ) )  e.  CC )  ->  ( exp `  ( (  seq M (  +  ,  F ) `  n
)  +  ( F `
 ( n  + 
1 ) ) ) )  =  ( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  ( exp `  ( F `  ( n  +  1
) ) ) ) )
6764, 65, 66syl2anc 693 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( exp `  (
(  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) )  =  ( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  ( exp `  ( F `  ( n  +  1
) ) ) ) )
6859, 67eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( ( exp `  (  seq M (  +  ,  F ) `
 n ) )  x.  ( ( exp 
o.  F ) `  ( n  +  1
) ) )  =  ( exp `  (
(  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) ) )
69683adant3 1081 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
( ( exp `  (  seq M (  +  ,  F ) `  n
) )  x.  (
( exp  o.  F
) `  ( n  +  1 ) ) )  =  ( exp `  ( (  seq M
(  +  ,  F
) `  n )  +  ( F `  ( n  +  1
) ) ) ) )
7052, 69eqtrd 2656 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  ( exp  o.  F ) ) `  n )  x.  ( ( exp 
o.  F ) `  ( n  +  1
) ) )  =  ( exp `  (
(  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) ) )
71 seqp1 12816 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  ( exp  o.  F ) ) `  n )  x.  (
( exp  o.  F
) `  ( n  +  1 ) ) ) )
7271adantr 481 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  (  seq M
(  x.  ,  ( exp  o.  F ) ) `  ( n  +  1 ) )  =  ( (  seq M (  x.  , 
( exp  o.  F
) ) `  n
)  x.  ( ( exp  o.  F ) `
 ( n  + 
1 ) ) ) )
73723adant3 1081 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  ( exp  o.  F ) ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  x.  ( ( exp  o.  F ) `  (
n  +  1 ) ) ) )
74 seqp1 12816 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  +  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) )
7574adantr 481 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  (  seq M
(  +  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  n
)  +  ( F `
 ( n  + 
1 ) ) ) )
7675fveq2d 6195 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph )  ->  ( exp `  (  seq M (  +  ,  F ) `  (
n  +  1 ) ) )  =  ( exp `  ( (  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) ) )
77763adant3 1081 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
( exp `  (  seq M (  +  ,  F ) `  (
n  +  1 ) ) )  =  ( exp `  ( (  seq M (  +  ,  F ) `  n )  +  ( F `  ( n  +  1 ) ) ) ) )
7870, 73, 773eqtr4d 2666 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph  /\  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  ( exp  o.  F ) ) `  ( n  +  1
) )  =  ( exp `  (  seq M (  +  ,  F ) `  (
n  +  1 ) ) ) )
79783exp 1264 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  ( exp  o.  F ) ) `  n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) )  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  (
n  +  1 ) )  =  ( exp `  (  seq M (  +  ,  F ) `
 ( n  + 
1 ) ) ) ) ) )
8079a2d 29 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  ( exp  o.  F ) ) `  n )  =  ( exp `  (  seq M (  +  ,  F ) `  n
) ) )  -> 
( ph  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  (
n  +  1 ) )  =  ( exp `  (  seq M (  +  ,  F ) `
 ( n  + 
1 ) ) ) ) ) )
8123, 28, 33, 38, 50, 80uzind4 11746 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  ( exp 
o.  F ) ) `
 k )  =  ( exp `  (  seq M (  +  ,  F ) `  k
) ) ) )
8281, 1eleq2s 2719 . . . 4  |-  ( k  e.  Z  ->  ( ph  ->  (  seq M
(  x.  ,  ( exp  o.  F ) ) `  k )  =  ( exp `  (  seq M (  +  ,  F ) `  k
) ) ) )
8382impcom 446 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  k
)  =  ( exp `  (  seq M (  +  ,  F ) `
 k ) ) )
84 fvco3 6275 . . . 4  |-  ( (  seq M (  +  ,  F ) : Z --> CC  /\  k  e.  Z )  ->  (
( exp  o.  seq M (  +  ,  F ) ) `  k )  =  ( exp `  (  seq M (  +  ,  F ) `  k
) ) )
8516, 84sylan 488 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( exp  o.  seq M (  +  ,  F ) ) `  k )  =  ( exp `  (  seq M (  +  ,  F ) `  k
) ) )
8683, 85eqtr4d 2659 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (  seq M (  x.  , 
( exp  o.  F
) ) `  k
)  =  ( ( exp  o.  seq M
(  +  ,  F
) ) `  k
) )
8712, 18, 86eqfnfvd 6314 1  |-  ( ph  ->  seq M (  x.  ,  ( exp  o.  F ) )  =  ( exp  o.  seq M (  +  ,  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801   expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  iprodefisum  31627
  Copyright terms: Public domain W3C validator