| Step | Hyp | Ref
| Expression |
| 1 | | irrapxlem2 37387 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ ∃𝑎 ∈
(0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) |
| 2 | | 1m1e0 11089 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
| 3 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ) |
| 4 | 3 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℤ) |
| 5 | 4 | zred 11482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℝ) |
| 6 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (0...𝐵) → 𝑏 ∈ ℤ) |
| 7 | 6 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℤ) |
| 8 | 7 | zred 11482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℝ) |
| 9 | 5, 8 | posdifd 10614 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → (𝑎 < 𝑏 ↔ 0 < (𝑏 − 𝑎))) |
| 10 | 9 | biimpa 501 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < (𝑏 − 𝑎)) |
| 11 | 2, 10 | syl5eqbr 4688 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 − 1) < (𝑏 − 𝑎)) |
| 12 | | 1z 11407 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 13 | | simplrr 801 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (0...𝐵)) |
| 14 | 13, 6 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ) |
| 15 | | simplrl 800 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (0...𝐵)) |
| 16 | 15, 3 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ) |
| 17 | 14, 16 | zsubcld 11487 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ ℤ) |
| 18 | | zlem1lt 11429 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ (𝑏
− 𝑎) ∈ ℤ)
→ (1 ≤ (𝑏 −
𝑎) ↔ (1 − 1)
< (𝑏 − 𝑎))) |
| 19 | 12, 17, 18 | sylancr 695 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 ≤ (𝑏 − 𝑎) ↔ (1 − 1) < (𝑏 − 𝑎))) |
| 20 | 11, 19 | mpbird 247 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ≤ (𝑏 − 𝑎)) |
| 21 | 14 | zred 11482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ) |
| 22 | 16 | zred 11482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ) |
| 23 | 21, 22 | resubcld 10458 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ ℝ) |
| 24 | | 0red 10041 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ∈ ℝ) |
| 25 | 21, 24 | resubcld 10458 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ∈ ℝ) |
| 26 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℕ) |
| 27 | 26 | nnred 11035 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℝ) |
| 28 | | elfzle1 12344 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (0...𝐵) → 0 ≤ 𝑎) |
| 29 | 15, 28 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎) |
| 30 | 24, 22, 21, 29 | lesub2dd 10644 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ≤ (𝑏 − 0)) |
| 31 | 21 | recnd 10068 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℂ) |
| 32 | 31 | subid1d 10381 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) = 𝑏) |
| 33 | | elfzle2 12345 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (0...𝐵) → 𝑏 ≤ 𝐵) |
| 34 | 13, 33 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ≤ 𝐵) |
| 35 | 32, 34 | eqbrtrd 4675 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ≤ 𝐵) |
| 36 | 23, 25, 27, 30, 35 | letrd 10194 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ≤ 𝐵) |
| 37 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℤ) |
| 38 | 26 | nnzd 11481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℤ) |
| 39 | | elfz 12332 |
. . . . . . . 8
⊢ (((𝑏 − 𝑎) ∈ ℤ ∧ 1 ∈ ℤ ∧
𝐵 ∈ ℤ) →
((𝑏 − 𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏 − 𝑎) ∧ (𝑏 − 𝑎) ≤ 𝐵))) |
| 40 | 17, 37, 38, 39 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝑏 − 𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏 − 𝑎) ∧ (𝑏 − 𝑎) ≤ 𝐵))) |
| 41 | 20, 36, 40 | mpbir2and 957 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ (1...𝐵)) |
| 42 | 41 | adantrr 753 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (𝑏 − 𝑎) ∈ (1...𝐵)) |
| 43 | | rpre 11839 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
| 44 | 43 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℝ) |
| 45 | 44, 22 | remulcld 10070 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℝ) |
| 46 | 44, 21 | remulcld 10070 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℝ) |
| 47 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
| 48 | 22, 21, 47 | ltled 10185 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ≤ 𝑏) |
| 49 | | rpgt0 11844 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ+
→ 0 < 𝐴) |
| 50 | 49 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < 𝐴) |
| 51 | | lemul2 10876 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴)) → (𝑎 ≤ 𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))) |
| 52 | 22, 21, 44, 50, 51 | syl112anc 1330 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑎 ≤ 𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))) |
| 53 | 48, 52 | mpbid 222 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) |
| 54 | | flword2 12614 |
. . . . . . . 8
⊢ (((𝐴 · 𝑎) ∈ ℝ ∧ (𝐴 · 𝑏) ∈ ℝ ∧ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) → (⌊‘(𝐴 · 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎)))) |
| 55 | 45, 46, 53, 54 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎)))) |
| 56 | | uznn0sub 11719 |
. . . . . . 7
⊢
((⌊‘(𝐴
· 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
| 57 | 55, 56 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
| 58 | 57 | adantrr 753 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
| 59 | 44 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℂ) |
| 60 | 22 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℂ) |
| 61 | 59, 31, 60 | subdid 10486 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · (𝑏 − 𝑎)) = ((𝐴 · 𝑏) − (𝐴 · 𝑎))) |
| 62 | 61 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) |
| 63 | 46 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℂ) |
| 64 | 45 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℂ) |
| 65 | 46 | flcld 12599 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℤ) |
| 66 | 65 | zcnd 11483 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℂ) |
| 67 | 45 | flcld 12599 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℤ) |
| 68 | 67 | zcnd 11483 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℂ) |
| 69 | 63, 64, 66, 68 | sub4d 10441 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))) |
| 70 | | modfrac 12683 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 · 𝑏) ∈ ℝ → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏)))) |
| 71 | 46, 70 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏)))) |
| 72 | 71 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) = ((𝐴 · 𝑏) mod 1)) |
| 73 | | modfrac 12683 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 · 𝑎) ∈ ℝ → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) |
| 74 | 45, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) |
| 75 | 74 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))) = ((𝐴 · 𝑎) mod 1)) |
| 76 | 72, 75 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) |
| 77 | 62, 69, 76 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) |
| 78 | 77 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) = (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))) |
| 79 | | 1rp 11836 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 80 | 79 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈
ℝ+) |
| 81 | 46, 80 | modcld 12674 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℝ) |
| 82 | 81 | recnd 10068 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℂ) |
| 83 | 45, 80 | modcld 12674 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℝ) |
| 84 | 83 | recnd 10068 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℂ) |
| 85 | 82, 84 | abssubd 14192 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) = (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1)))) |
| 86 | 78, 85 | eqtr2d 2657 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) = (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))) |
| 87 | 86 | breq1d 4663 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
| 88 | 87 | biimpd 219 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
| 89 | 88 | impr 649 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)) |
| 90 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑏 − 𝑎) → (𝐴 · 𝑥) = (𝐴 · (𝑏 − 𝑎))) |
| 91 | 90 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = (𝑏 − 𝑎) → ((𝐴 · 𝑥) − 𝑦) = ((𝐴 · (𝑏 − 𝑎)) − 𝑦)) |
| 92 | 91 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = (𝑏 − 𝑎) → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦))) |
| 93 | 92 | breq1d 4663 |
. . . . . 6
⊢ (𝑥 = (𝑏 − 𝑎) → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) < (1 / 𝐵))) |
| 94 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((𝐴 · (𝑏 − 𝑎)) − 𝑦) = ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) |
| 95 | 94 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) = (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))) |
| 96 | 95 | breq1d 4663 |
. . . . . 6
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
| 97 | 93, 96 | rspc2ev 3324 |
. . . . 5
⊢ (((𝑏 − 𝑎) ∈ (1...𝐵) ∧ ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0 ∧
(abs‘((𝐴 ·
(𝑏 − 𝑎)) −
((⌊‘(𝐴 ·
𝑏)) −
(⌊‘(𝐴 ·
𝑎))))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |
| 98 | 42, 58, 89, 97 | syl3anc 1326 |
. . . 4
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |
| 99 | 98 | ex 450 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → ((𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵))) |
| 100 | 99 | rexlimdvva 3038 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ (∃𝑎 ∈
(0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵))) |
| 101 | 1, 100 | mpd 15 |
1
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ ∃𝑥 ∈
(1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |