Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Structured version   Visualization version   GIF version

Theorem irrapxlem3 37388
Description: Lemma for irrapx1 37392. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 37387 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)))
2 1m1e0 11089 . . . . . . . . 9 (1 − 1) = 0
3 elfzelz 12342 . . . . . . . . . . . . 13 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
43ad2antrl 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℤ)
54zred 11482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℝ)
6 elfzelz 12342 . . . . . . . . . . . . 13 (𝑏 ∈ (0...𝐵) → 𝑏 ∈ ℤ)
76ad2antll 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℤ)
87zred 11482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℝ)
95, 8posdifd 10614 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
109biimpa 501 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < (𝑏𝑎))
112, 10syl5eqbr 4688 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 − 1) < (𝑏𝑎))
12 1z 11407 . . . . . . . . 9 1 ∈ ℤ
13 simplrr 801 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (0...𝐵))
1413, 6syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ)
15 simplrl 800 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (0...𝐵))
1615, 3syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ)
1714, 16zsubcld 11487 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℤ)
18 zlem1lt 11429 . . . . . . . . 9 ((1 ∈ ℤ ∧ (𝑏𝑎) ∈ ℤ) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
1912, 17, 18sylancr 695 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
2011, 19mpbird 247 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ≤ (𝑏𝑎))
2114zred 11482 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
2216zred 11482 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
2321, 22resubcld 10458 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℝ)
24 0red 10041 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ∈ ℝ)
2521, 24resubcld 10458 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ∈ ℝ)
26 simpllr 799 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℕ)
2726nnred 11035 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℝ)
28 elfzle1 12344 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 0 ≤ 𝑎)
2915, 28syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
3024, 22, 21, 29lesub2dd 10644 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ (𝑏 − 0))
3121recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℂ)
3231subid1d 10381 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) = 𝑏)
33 elfzle2 12345 . . . . . . . . . 10 (𝑏 ∈ (0...𝐵) → 𝑏𝐵)
3413, 33syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏𝐵)
3532, 34eqbrtrd 4675 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ≤ 𝐵)
3623, 25, 27, 30, 35letrd 10194 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ 𝐵)
3712a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℤ)
3826nnzd 11481 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℤ)
39 elfz 12332 . . . . . . . 8 (((𝑏𝑎) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑏𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏𝑎) ∧ (𝑏𝑎) ≤ 𝐵)))
4017, 37, 38, 39syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝑏𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏𝑎) ∧ (𝑏𝑎) ≤ 𝐵)))
4120, 36, 40mpbir2and 957 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ (1...𝐵))
4241adantrr 753 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (𝑏𝑎) ∈ (1...𝐵))
43 rpre 11839 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4443ad3antrrr 766 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℝ)
4544, 22remulcld 10070 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℝ)
4644, 21remulcld 10070 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℝ)
47 simpr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4822, 21, 47ltled 10185 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎𝑏)
49 rpgt0 11844 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → 0 < 𝐴)
5049ad3antrrr 766 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < 𝐴)
51 lemul2 10876 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5222, 21, 44, 50, 51syl112anc 1330 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5348, 52mpbid 222 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))
54 flword2 12614 . . . . . . . 8 (((𝐴 · 𝑎) ∈ ℝ ∧ (𝐴 · 𝑏) ∈ ℝ ∧ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
5545, 46, 53, 54syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
56 uznn0sub 11719 . . . . . . 7 ((⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5755, 56syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5857adantrr 753 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5944recnd 10068 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℂ)
6022recnd 10068 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℂ)
6159, 31, 60subdid 10486 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · (𝑏𝑎)) = ((𝐴 · 𝑏) − (𝐴 · 𝑎)))
6261oveq1d 6665 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
6346recnd 10068 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℂ)
6445recnd 10068 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℂ)
6546flcld 12599 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℤ)
6665zcnd 11483 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℂ)
6745flcld 12599 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℤ)
6867zcnd 11483 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℂ)
6963, 64, 66, 68sub4d 10441 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))))
70 modfrac 12683 . . . . . . . . . . . . . 14 ((𝐴 · 𝑏) ∈ ℝ → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
7146, 70syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
7271eqcomd 2628 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) = ((𝐴 · 𝑏) mod 1))
73 modfrac 12683 . . . . . . . . . . . . . 14 ((𝐴 · 𝑎) ∈ ℝ → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7445, 73syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7574eqcomd 2628 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))) = ((𝐴 · 𝑎) mod 1))
7672, 75oveq12d 6668 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7762, 69, 763eqtrd 2660 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7877fveq2d 6195 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) = (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))))
79 1rp 11836 . . . . . . . . . . . . 13 1 ∈ ℝ+
8079a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℝ+)
8146, 80modcld 12674 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℝ)
8281recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℂ)
8345, 80modcld 12674 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
8483recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℂ)
8582, 84abssubd 14192 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) = (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))))
8678, 85eqtr2d 2657 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
8786breq1d 4663 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8887biimpd 219 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8988impr 649 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))
90 oveq2 6658 . . . . . . . . 9 (𝑥 = (𝑏𝑎) → (𝐴 · 𝑥) = (𝐴 · (𝑏𝑎)))
9190oveq1d 6665 . . . . . . . 8 (𝑥 = (𝑏𝑎) → ((𝐴 · 𝑥) − 𝑦) = ((𝐴 · (𝑏𝑎)) − 𝑦))
9291fveq2d 6195 . . . . . . 7 (𝑥 = (𝑏𝑎) → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)))
9392breq1d 4663 . . . . . 6 (𝑥 = (𝑏𝑎) → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵)))
94 oveq2 6658 . . . . . . . 8 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((𝐴 · (𝑏𝑎)) − 𝑦) = ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
9594fveq2d 6195 . . . . . . 7 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
9695breq1d 4663 . . . . . 6 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
9793, 96rspc2ev 3324 . . . . 5 (((𝑏𝑎) ∈ (1...𝐵) ∧ ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0 ∧ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9842, 58, 89, 97syl3anc 1326 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9998ex 450 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → ((𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
10099rexlimdvva 3038 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
1011, 100mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  cfl 12591   mod cmo 12668  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  irrapxlem4  37389
  Copyright terms: Public domain W3C validator