Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Visualization version   GIF version

Theorem irrapxlem2 37387
Description: Lemma for irrapx1 37392. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 37386 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
2 nnre 11027 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32ad3antlr 767 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
4 rpre 11839 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
54ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
6 elfzelz 12342 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℤ)
76zred 11482 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℝ)
87ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑥 ∈ ℝ)
95, 8remulcld 10070 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑥) ∈ ℝ)
10 1rp 11836 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ+)
129, 11modcld 12674 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℝ)
133, 12remulcld 10070 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ)
14 intfrac 12685 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
16 elfzelz 12342 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℤ)
1716zred 11482 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℝ)
1817adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑦 ∈ ℝ)
195, 18remulcld 10070 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑦) ∈ ℝ)
2019, 11modcld 12674 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℝ)
213, 20remulcld 10070 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
22 intfrac 12685 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2321, 22syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2415, 23oveq12d 6668 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
2524fveq2d 6195 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
2625adantr 481 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
27 simpr 477 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
2827oveq1d 6665 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
2928oveq1d 6665 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
3029fveq2d 6195 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
3121flcld 12599 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℤ)
3231zcnd 11483 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℂ)
3313, 11modcld 12674 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℝ)
3433recnd 10068 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℂ)
3521, 11modcld 12674 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℝ)
3635recnd 10068 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℂ)
3732, 34, 36pnpcand 10429 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
3837fveq2d 6195 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
39 0red 10041 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ∈ ℝ)
40 1red 10055 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ)
41 modelico 12680 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
4213, 10, 41sylancl 694 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
43 modelico 12680 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
4421, 10, 43sylancl 694 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
45 icodiamlt 14174 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1) ∧ ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
4639, 40, 42, 44, 45syl22anc 1327 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
47 1m0e1 11131 . . . . . . . . . . . 12 (1 − 0) = 1
4846, 47syl6breq 4694 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < 1)
4938, 48eqbrtrd 4675 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5049adantr 481 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5130, 50eqbrtrd 4675 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5226, 51eqbrtrd 4675 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1)
5352ex 450 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
5412, 20resubcld 10458 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
5554recnd 10068 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℂ)
5655abscld 14175 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ)
57 nngt0 11049 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
5857ad3antlr 767 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 < 𝐵)
5958gt0ne0d 10592 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ≠ 0)
603, 59rereccld 10852 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (1 / 𝐵) ∈ ℝ)
61 ltmul2 10874 . . . . . . . 8 (((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ ∧ (1 / 𝐵) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
6256, 60, 3, 58, 61syl112anc 1330 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
63 nnnn0 11299 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
6463nn0ge0d 11354 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
6564ad3antlr 767 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ≤ 𝐵)
663, 65absidd 14161 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘𝐵) = 𝐵)
6766eqcomd 2628 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 = (abs‘𝐵))
6867oveq1d 6665 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
693recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
7069, 55absmuld 14193 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
7112recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℂ)
7220recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℂ)
7369, 71, 72subdid 10486 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) = ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))))
7473fveq2d 6195 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7568, 70, 743eqtr2d 2662 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7669, 59recidd 10796 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (1 / 𝐵)) = 1)
7775, 76breq12d 4666 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵)) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7862, 77bitrd 268 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7953, 78sylibrd 249 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
8079anim2d 589 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8180reximdva 3017 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) → (∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8281reximdva 3017 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
831, 82mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  +crp 11832  [,)cico 12177  ...cfz 12326  cfl 12591   mod cmo 12668  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  irrapxlem3  37388
  Copyright terms: Public domain W3C validator