Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Structured version   Visualization version   Unicode version

Theorem irrapxlem3 37388
Description: Lemma for irrapx1 37392. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 37387 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. a  e.  ( 0 ... B
) E. b  e.  ( 0 ... B
) ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) ) )
2 1m1e0 11089 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
3 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( a  e.  ( 0 ... B )  ->  a  e.  ZZ )
43ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  ZZ )
54zred 11482 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  RR )
6 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( b  e.  ( 0 ... B )  ->  b  e.  ZZ )
76ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  ZZ )
87zred 11482 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  RR )
95, 8posdifd 10614 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( a  <  b  <->  0  <  ( b  -  a ) ) )
109biimpa 501 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  ( b  -  a ) )
112, 10syl5eqbr 4688 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  -  1 )  <  ( b  -  a ) )
12 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
13 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ( 0 ... B ) )
1413, 6syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ZZ )
15 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ( 0 ... B ) )
1615, 3syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ZZ )
1714, 16zsubcld 11487 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ZZ )
18 zlem1lt 11429 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( b  -  a
)  e.  ZZ )  ->  ( 1  <_ 
( b  -  a
)  <->  ( 1  -  1 )  <  (
b  -  a ) ) )
1912, 17, 18sylancr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  <_  (
b  -  a )  <-> 
( 1  -  1 )  <  ( b  -  a ) ) )
2011, 19mpbird 247 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  <_  ( b  -  a ) )
2114zred 11482 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  RR )
2216zred 11482 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  RR )
2321, 22resubcld 10458 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  RR )
24 0red 10041 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  e.  RR )
2521, 24resubcld 10458 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  e.  RR )
26 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  NN )
2726nnred 11035 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  RR )
28 elfzle1 12344 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... B )  ->  0  <_  a )
2915, 28syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <_  a )
3024, 22, 21, 29lesub2dd 10644 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  ( b  -  0 ) )
3121recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  CC )
3231subid1d 10381 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  =  b )
33 elfzle2 12345 . . . . . . . . . 10  |-  ( b  e.  ( 0 ... B )  ->  b  <_  B )
3413, 33syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  <_  B )
3532, 34eqbrtrd 4675 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  <_  B )
3623, 25, 27, 30, 35letrd 10194 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  B )
3712a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  ZZ )
3826nnzd 11481 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  ZZ )
39 elfz 12332 . . . . . . . 8  |-  ( ( ( b  -  a
)  e.  ZZ  /\  1  e.  ZZ  /\  B  e.  ZZ )  ->  (
( b  -  a
)  e.  ( 1 ... B )  <->  ( 1  <_  ( b  -  a )  /\  (
b  -  a )  <_  B ) ) )
4017, 37, 38, 39syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( b  -  a )  e.  ( 1 ... B )  <-> 
( 1  <_  (
b  -  a )  /\  ( b  -  a )  <_  B
) ) )
4120, 36, 40mpbir2and 957 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ( 1 ... B ) )
4241adantrr 753 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( b  -  a )  e.  ( 1 ... B
) )
43 rpre 11839 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
4443ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  RR )
4544, 22remulcld 10070 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  RR )
4644, 21remulcld 10070 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  RR )
47 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <  b )
4822, 21, 47ltled 10185 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <_  b )
49 rpgt0 11844 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  0  < 
A )
5049ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  A )
51 lemul2 10876 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5222, 21, 44, 50, 51syl112anc 1330 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5348, 52mpbid 222 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  <_  ( A  x.  b ) )
54 flword2 12614 . . . . . . . 8  |-  ( ( ( A  x.  a
)  e.  RR  /\  ( A  x.  b
)  e.  RR  /\  ( A  x.  a
)  <_  ( A  x.  b ) )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
5545, 46, 53, 54syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
56 uznn0sub 11719 . . . . . . 7  |-  ( ( |_ `  ( A  x.  b ) )  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) )  ->  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5755, 56syl 17 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5857adantrr 753 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5944recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  CC )
6022recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  CC )
6159, 31, 60subdid 10486 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  (
b  -  a ) )  =  ( ( A  x.  b )  -  ( A  x.  a ) ) )
6261oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( A  x.  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) )
6346recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  CC )
6445recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  CC )
6546flcld 12599 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ZZ )
6665zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  CC )
6745flcld 12599 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  ZZ )
6867zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  CC )
6963, 64, 66, 68sub4d 10441 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( A  x.  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( |_
`  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) ) )
70 modfrac 12683 . . . . . . . . . . . . . 14  |-  ( ( A  x.  b )  e.  RR  ->  (
( A  x.  b
)  mod  1 )  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) ) )
7146, 70syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b
) ) ) )
7271eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  =  ( ( A  x.  b )  mod  1 ) )
73 modfrac 12683 . . . . . . . . . . . . . 14  |-  ( ( A  x.  a )  e.  RR  ->  (
( A  x.  a
)  mod  1 )  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) )
7445, 73syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )
7574eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) )  =  ( ( A  x.  a )  mod  1 ) )
7672, 75oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )  =  ( ( ( A  x.  b )  mod  1 )  -  ( ( A  x.  a )  mod  1
) ) )
7762, 69, 763eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  mod  1 )  -  ( ( A  x.  a )  mod  1 ) ) )
7877fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  =  ( abs `  ( ( ( A  x.  b )  mod  1 )  -  (
( A  x.  a
)  mod  1 ) ) ) )
79 1rp 11836 . . . . . . . . . . . . 13  |-  1  e.  RR+
8079a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  RR+ )
8146, 80modcld 12674 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  RR )
8281recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  CC )
8345, 80modcld 12674 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  RR )
8483recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  CC )
8582, 84abssubd 14192 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  b )  mod  1
)  -  ( ( A  x.  a )  mod  1 ) ) )  =  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) ) )
8678, 85eqtr2d 2657 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  =  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) ) )
8786breq1d 4663 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) ) )
8887biimpd 219 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
8988impr 649 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )
90 oveq2 6658 . . . . . . . . 9  |-  ( x  =  ( b  -  a )  ->  ( A  x.  x )  =  ( A  x.  ( b  -  a
) ) )
9190oveq1d 6665 . . . . . . . 8  |-  ( x  =  ( b  -  a )  ->  (
( A  x.  x
)  -  y )  =  ( ( A  x.  ( b  -  a ) )  -  y ) )
9291fveq2d 6195 . . . . . . 7  |-  ( x  =  ( b  -  a )  ->  ( abs `  ( ( A  x.  x )  -  y ) )  =  ( abs `  (
( A  x.  (
b  -  a ) )  -  y ) ) )
9392breq1d 4663 . . . . . 6  |-  ( x  =  ( b  -  a )  ->  (
( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  <  (
1  /  B ) ) )
94 oveq2 6658 . . . . . . . 8  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( A  x.  ( b  -  a ) )  -  y )  =  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )
9594fveq2d 6195 . . . . . . 7  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  =  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) ) )
9695breq1d 4663 . . . . . 6  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( abs `  ( ( A  x.  ( b  -  a ) )  -  y ) )  < 
( 1  /  B
)  <->  ( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
9793, 96rspc2ev 3324 . . . . 5  |-  ( ( ( b  -  a
)  e.  ( 1 ... B )  /\  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0  /\  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
9842, 58, 89, 97syl3anc 1326 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
9998ex 450 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) ) )
10099rexlimdvva 3038 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( E. a  e.  (
0 ... B ) E. b  e.  ( 0 ... B ) ( a  <  b  /\  ( abs `  ( ( ( A  x.  a
)  mod  1 )  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) )  ->  E. x  e.  (
1 ... B ) E. y  e.  NN0  ( abs `  ( ( A  x.  x )  -  y ) )  < 
( 1  /  B
) ) )
1011, 100mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   |_cfl 12591    mod cmo 12668   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  irrapxlem4  37389
  Copyright terms: Public domain W3C validator