![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isepi | Structured version Visualization version GIF version |
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isepi | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16378 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2622 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
5 | eqid 2622 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
6 | eqid 2622 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
7 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 1 | oppccat 16382 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
10 | isepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | isepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 3, 4, 5, 6, 9, 10, 11 | ismon 16393 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))))) |
13 | isepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 7, 6, 13 | oppcmon 16398 | . . 3 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 14 | eleq2d 2687 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌))) |
16 | isepi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16, 1 | oppchom 16375 | . . . . 5 ⊢ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)) |
19 | 18 | eleq2d 2687 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌))) |
20 | 16, 1 | oppchom 16375 | . . . . . . . 8 ⊢ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)) |
22 | isepi.o | . . . . . . . 8 ⊢ · = (comp‘𝐶) | |
23 | simpr 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) | |
24 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
25 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 16377 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) |
27 | 21, 26 | mpteq12dv 4733 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
28 | 27 | cnveqd 5298 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
29 | 28 | funeqd 5910 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
30 | 29 | ralbidva 2985 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
31 | 19, 30 | anbi12d 747 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
32 | 12, 15, 31 | 3bitr3d 298 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 〈cop 4183 ↦ cmpt 4729 ◡ccnv 5113 Fun wfun 5882 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 oppCatcoppc 16371 Monocmon 16388 Epicepi 16389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-oppc 16372 df-mon 16390 df-epi 16391 |
This theorem is referenced by: isepi2 16401 epihom 16402 |
Copyright terms: Public domain | W3C validator |