Proof of Theorem seqcoll2
| Step | Hyp | Ref
| Expression |
| 1 | | seqcoll2.1b |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
| 2 | | fzssuz 12382 |
. . . 4
⊢ (𝑀...𝑁) ⊆
(ℤ≥‘𝑀) |
| 3 | | seqcoll2.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) |
| 4 | | seqcoll2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 5 | | isof1o 6573 |
. . . . . . . 8
⊢ (𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 7 | | f1of 6137 |
. . . . . . 7
⊢ (𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(#‘𝐴))⟶𝐴) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:(1...(#‘𝐴))⟶𝐴) |
| 9 | | seqcoll2.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 10 | | fzfi 12771 |
. . . . . . . . . . . . 13
⊢ (𝑀...𝑁) ∈ Fin |
| 11 | | ssfi 8180 |
. . . . . . . . . . . . 13
⊢ (((𝑀...𝑁) ∈ Fin ∧ 𝐴 ⊆ (𝑀...𝑁)) → 𝐴 ∈ Fin) |
| 12 | 10, 3, 11 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 13 | | hasheq0 13154 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Fin →
((#‘𝐴) = 0 ↔
𝐴 =
∅)) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((#‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 15 | 14 | necon3bbid 2831 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ (#‘𝐴) = 0 ↔ 𝐴 ≠ ∅)) |
| 16 | 9, 15 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (#‘𝐴) = 0) |
| 17 | | hashcl 13147 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Fin →
(#‘𝐴) ∈
ℕ0) |
| 18 | 12, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝐴) ∈
ℕ0) |
| 19 | | elnn0 11294 |
. . . . . . . . . . 11
⊢
((#‘𝐴) ∈
ℕ0 ↔ ((#‘𝐴) ∈ ℕ ∨ (#‘𝐴) = 0)) |
| 20 | 18, 19 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → ((#‘𝐴) ∈ ℕ ∨
(#‘𝐴) =
0)) |
| 21 | 20 | ord 392 |
. . . . . . . . 9
⊢ (𝜑 → (¬ (#‘𝐴) ∈ ℕ →
(#‘𝐴) =
0)) |
| 22 | 16, 21 | mt3d 140 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝐴) ∈ ℕ) |
| 23 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 24 | 22, 23 | syl6eleq 2711 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐴) ∈
(ℤ≥‘1)) |
| 25 | | eluzfz2 12349 |
. . . . . . 7
⊢
((#‘𝐴) ∈
(ℤ≥‘1) → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 26 | 24, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 27 | 8, 26 | ffvelrnd 6360 |
. . . . 5
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ 𝐴) |
| 28 | 3, 27 | sseldd 3604 |
. . . 4
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ (𝑀...𝑁)) |
| 29 | 2, 28 | sseldi 3601 |
. . 3
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑀)) |
| 30 | | elfzuz3 12339 |
. . . 4
⊢ ((𝐺‘(#‘𝐴)) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝐺‘(#‘𝐴)))) |
| 31 | 28, 30 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝐺‘(#‘𝐴)))) |
| 32 | | fzss2 12381 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘(𝐺‘(#‘𝐴))) → (𝑀...(𝐺‘(#‘𝐴))) ⊆ (𝑀...𝑁)) |
| 33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑀...(𝐺‘(#‘𝐴))) ⊆ (𝑀...𝑁)) |
| 34 | 33 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → 𝑘 ∈ (𝑀...𝑁)) |
| 35 | | seqcoll2.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) |
| 36 | 34, 35 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
| 37 | | seqcoll2.c |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
| 38 | 29, 36, 37 | seqcl 12821 |
. . 3
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(#‘𝐴))) ∈ 𝑆) |
| 39 | | peano2uz 11741 |
. . . . . . . 8
⊢ ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑀) → ((𝐺‘(#‘𝐴)) + 1) ∈
(ℤ≥‘𝑀)) |
| 40 | 29, 39 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘(#‘𝐴)) + 1) ∈
(ℤ≥‘𝑀)) |
| 41 | | fzss1 12380 |
. . . . . . 7
⊢ (((𝐺‘(#‘𝐴)) + 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(#‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → (((𝐺‘(#‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 43 | 42 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 44 | | eluzelre 11698 |
. . . . . . . . 9
⊢ ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(#‘𝐴)) ∈ ℝ) |
| 45 | 29, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ ℝ) |
| 46 | 45 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → (𝐺‘(#‘𝐴)) ∈ ℝ) |
| 47 | | peano2re 10209 |
. . . . . . . 8
⊢ ((𝐺‘(#‘𝐴)) ∈ ℝ → ((𝐺‘(#‘𝐴)) + 1) ∈
ℝ) |
| 48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → ((𝐺‘(#‘𝐴)) + 1) ∈ ℝ) |
| 49 | | elfzelz 12342 |
. . . . . . . . 9
⊢ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℤ) |
| 50 | 49 | zred 11482 |
. . . . . . . 8
⊢ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℝ) |
| 51 | 50 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ℝ) |
| 52 | 46 | ltp1d 10954 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → (𝐺‘(#‘𝐴)) < ((𝐺‘(#‘𝐴)) + 1)) |
| 53 | | elfzle1 12344 |
. . . . . . . 8
⊢ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) → ((𝐺‘(#‘𝐴)) + 1) ≤ 𝑘) |
| 54 | 53 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → ((𝐺‘(#‘𝐴)) + 1) ≤ 𝑘) |
| 55 | 46, 48, 51, 52, 54 | ltletrd 10197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → (𝐺‘(#‘𝐴)) < 𝑘) |
| 56 | 6 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 57 | | f1ocnv 6149 |
. . . . . . . . . . . . 13
⊢ (𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴))) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴))) |
| 59 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ (◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴)) → ◡𝐺:𝐴⟶(1...(#‘𝐴))) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(#‘𝐴))) |
| 61 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
| 62 | 60, 61 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(#‘𝐴))) |
| 63 | | elfzle2 12345 |
. . . . . . . . . 10
⊢ ((◡𝐺‘𝑘) ∈ (1...(#‘𝐴)) → (◡𝐺‘𝑘) ≤ (#‘𝐴)) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ≤ (#‘𝐴)) |
| 65 | | elfzelz 12342 |
. . . . . . . . . . . 12
⊢ ((◡𝐺‘𝑘) ∈ (1...(#‘𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
| 66 | 62, 65 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
| 67 | 66 | zred 11482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℝ) |
| 68 | 18 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (#‘𝐴) ∈
ℕ0) |
| 69 | 68 | nn0red 11352 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (#‘𝐴) ∈ ℝ) |
| 70 | 67, 69 | lenltd 10183 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) ≤ (#‘𝐴) ↔ ¬ (#‘𝐴) < (◡𝐺‘𝑘))) |
| 71 | 64, 70 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ¬ (#‘𝐴) < (◡𝐺‘𝑘)) |
| 72 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 73 | 26 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 74 | | isorel 6576 |
. . . . . . . . . 10
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ ((#‘𝐴) ∈ (1...(#‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(#‘𝐴)))) → ((#‘𝐴) < (◡𝐺‘𝑘) ↔ (𝐺‘(#‘𝐴)) < (𝐺‘(◡𝐺‘𝑘)))) |
| 75 | 72, 73, 62, 74 | syl12anc 1324 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ((#‘𝐴) < (◡𝐺‘𝑘) ↔ (𝐺‘(#‘𝐴)) < (𝐺‘(◡𝐺‘𝑘)))) |
| 76 | | f1ocnvfv2 6533 |
. . . . . . . . . . 11
⊢ ((𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 77 | 56, 61, 76 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 78 | 77 | breq2d 4665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(#‘𝐴)) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘(#‘𝐴)) < 𝑘)) |
| 79 | 75, 78 | bitrd 268 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ((#‘𝐴) < (◡𝐺‘𝑘) ↔ (𝐺‘(#‘𝐴)) < 𝑘)) |
| 80 | 71, 79 | mtbid 314 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝐺‘(#‘𝐴)) < 𝑘) |
| 81 | 80 | expr 643 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → (𝑘 ∈ 𝐴 → ¬ (𝐺‘(#‘𝐴)) < 𝑘)) |
| 82 | 55, 81 | mt2d 131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → ¬ 𝑘 ∈ 𝐴) |
| 83 | 43, 82 | eldifd 3585 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) |
| 84 | | seqcoll2.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 85 | 83, 84 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (((𝐺‘(#‘𝐴)) + 1)...𝑁)) → (𝐹‘𝑘) = 𝑍) |
| 86 | 1, 29, 31, 38, 85 | seqid2 12847 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(#‘𝐴))) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 87 | | seqcoll2.1 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) |
| 88 | | seqcoll2.a |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 89 | 3, 2 | syl6ss 3615 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 90 | 33 | ssdifd 3746 |
. . . . 5
⊢ (𝜑 → ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴) ⊆ ((𝑀...𝑁) ∖ 𝐴)) |
| 91 | 90 | sselda 3603 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) |
| 92 | 91, 84 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 93 | | seqcoll2.8 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) |
| 94 | 87, 1, 37, 88, 4, 26, 89, 36, 92, 93 | seqcoll 13248 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(#‘𝐴))) = (seq1( + , 𝐻)‘(#‘𝐴))) |
| 95 | 86, 94 | eqtr3d 2658 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(#‘𝐴))) |