MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcvx Structured version   Visualization version   GIF version

Theorem dvcvx 23783
Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
dvcvx.a (𝜑𝐴 ∈ ℝ)
dvcvx.b (𝜑𝐵 ∈ ℝ)
dvcvx.l (𝜑𝐴 < 𝐵)
dvcvx.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvcvx.d (𝜑 → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
dvcvx.t (𝜑𝑇 ∈ (0(,)1))
dvcvx.c 𝐶 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
Assertion
Ref Expression
dvcvx (𝜑 → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵))))

Proof of Theorem dvcvx
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcvx.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dvcvx.c . . . 4 𝐶 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
3 dvcvx.t . . . . . . 7 (𝜑𝑇 ∈ (0(,)1))
4 elioore 12205 . . . . . . 7 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝜑𝑇 ∈ ℝ)
65, 1remulcld 10070 . . . . 5 (𝜑 → (𝑇 · 𝐴) ∈ ℝ)
7 1re 10039 . . . . . . 7 1 ∈ ℝ
8 resubcl 10345 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
97, 5, 8sylancr 695 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℝ)
10 dvcvx.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
119, 10remulcld 10070 . . . . 5 (𝜑 → ((1 − 𝑇) · 𝐵) ∈ ℝ)
126, 11readdcld 10069 . . . 4 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ)
132, 12syl5eqel 2705 . . 3 (𝜑𝐶 ∈ ℝ)
14 1cnd 10056 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
155recnd 10068 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
161recnd 10068 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1714, 15, 16subdird 10487 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1816mulid2d 10058 . . . . . . . 8 (𝜑 → (1 · 𝐴) = 𝐴)
1918oveq1d 6665 . . . . . . 7 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
2017, 19eqtrd 2656 . . . . . 6 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
21 dvcvx.l . . . . . . 7 (𝜑𝐴 < 𝐵)
22 eliooord 12233 . . . . . . . . . . 11 (𝑇 ∈ (0(,)1) → (0 < 𝑇𝑇 < 1))
233, 22syl 17 . . . . . . . . . 10 (𝜑 → (0 < 𝑇𝑇 < 1))
2423simprd 479 . . . . . . . . 9 (𝜑𝑇 < 1)
25 posdif 10521 . . . . . . . . . 10 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
265, 7, 25sylancl 694 . . . . . . . . 9 (𝜑 → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
2724, 26mpbid 222 . . . . . . . 8 (𝜑 → 0 < (1 − 𝑇))
28 ltmul2 10874 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇))) → (𝐴 < 𝐵 ↔ ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵)))
291, 10, 9, 27, 28syl112anc 1330 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵)))
3021, 29mpbid 222 . . . . . 6 (𝜑 → ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵))
3120, 30eqbrtrrd 4677 . . . . 5 (𝜑 → (𝐴 − (𝑇 · 𝐴)) < ((1 − 𝑇) · 𝐵))
321, 6, 11ltsubadd2d 10625 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) < ((1 − 𝑇) · 𝐵) ↔ 𝐴 < ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
3331, 32mpbid 222 . . . 4 (𝜑𝐴 < ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
3433, 2syl6breqr 4695 . . 3 (𝜑𝐴 < 𝐶)
351leidd 10594 . . . . 5 (𝜑𝐴𝐴)
3610recnd 10068 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
3714, 15, 36subdird 10487 . . . . . . . . . 10 (𝜑 → ((1 − 𝑇) · 𝐵) = ((1 · 𝐵) − (𝑇 · 𝐵)))
3836mulid2d 10058 . . . . . . . . . . 11 (𝜑 → (1 · 𝐵) = 𝐵)
3938oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((1 · 𝐵) − (𝑇 · 𝐵)) = (𝐵 − (𝑇 · 𝐵)))
4037, 39eqtrd 2656 . . . . . . . . 9 (𝜑 → ((1 − 𝑇) · 𝐵) = (𝐵 − (𝑇 · 𝐵)))
415, 10remulcld 10070 . . . . . . . . . 10 (𝜑 → (𝑇 · 𝐵) ∈ ℝ)
4223simpld 475 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑇)
43 ltmul2 10874 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) → (𝐴 < 𝐵 ↔ (𝑇 · 𝐴) < (𝑇 · 𝐵)))
441, 10, 5, 42, 43syl112anc 1330 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ (𝑇 · 𝐴) < (𝑇 · 𝐵)))
4521, 44mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑇 · 𝐴) < (𝑇 · 𝐵))
466, 41, 10, 45ltsub2dd 10640 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑇 · 𝐵)) < (𝐵 − (𝑇 · 𝐴)))
4740, 46eqbrtrd 4675 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐵) < (𝐵 − (𝑇 · 𝐴)))
486, 11, 10ltaddsub2d 10628 . . . . . . . 8 (𝜑 → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) < 𝐵 ↔ ((1 − 𝑇) · 𝐵) < (𝐵 − (𝑇 · 𝐴))))
4947, 48mpbird 247 . . . . . . 7 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) < 𝐵)
502, 49syl5eqbr 4688 . . . . . 6 (𝜑𝐶 < 𝐵)
5113, 10, 50ltled 10185 . . . . 5 (𝜑𝐶𝐵)
52 iccss 12241 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴𝐶𝐵)) → (𝐴[,]𝐶) ⊆ (𝐴[,]𝐵))
531, 10, 35, 51, 52syl22anc 1327 . . . 4 (𝜑 → (𝐴[,]𝐶) ⊆ (𝐴[,]𝐵))
54 dvcvx.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
55 rescncf 22700 . . . 4 ((𝐴[,]𝐶) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐶)) ∈ ((𝐴[,]𝐶)–cn→ℝ)))
5653, 54, 55sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐶)) ∈ ((𝐴[,]𝐶)–cn→ℝ))
57 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
5857a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
59 cncff 22696 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
6054, 59syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
61 fss 6056 . . . . . . . 8 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
6260, 57, 61sylancl 694 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
63 iccssre 12255 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
641, 10, 63syl2anc 693 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
65 iccssre 12255 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
661, 13, 65syl2anc 693 . . . . . . 7 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
67 eqid 2622 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867tgioo2 22606 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6967, 68dvres 23675 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,]𝐶) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))))
7058, 62, 64, 66, 69syl22anc 1327 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))))
71 iccntr 22624 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶)) = (𝐴(,)𝐶))
721, 13, 71syl2anc 693 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶)) = (𝐴(,)𝐶))
7372reseq2d 5396 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
7470, 73eqtrd 2656 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
7574dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
76 dmres 5419 . . . . 5 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)) = ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹))
7710rexrd 10089 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
78 iooss2 12211 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶𝐵) → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
7977, 51, 78syl2anc 693 . . . . . . 7 (𝜑 → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
80 dvcvx.d . . . . . . . 8 (𝜑 → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
81 isof1o 6573 . . . . . . . 8 ((ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊) → (ℝ D 𝐹):(𝐴(,)𝐵)–1-1-onto𝑊)
82 f1odm 6141 . . . . . . . 8 ((ℝ D 𝐹):(𝐴(,)𝐵)–1-1-onto𝑊 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8380, 81, 823syl 18 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8479, 83sseqtr4d 3642 . . . . . 6 (𝜑 → (𝐴(,)𝐶) ⊆ dom (ℝ D 𝐹))
85 df-ss 3588 . . . . . 6 ((𝐴(,)𝐶) ⊆ dom (ℝ D 𝐹) ↔ ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐶))
8684, 85sylib 208 . . . . 5 (𝜑 → ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐶))
8776, 86syl5eq 2668 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)) = (𝐴(,)𝐶))
8875, 87eqtrd 2656 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = (𝐴(,)𝐶))
891, 13, 34, 56, 88mvth 23755 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)))
901, 13, 34ltled 10185 . . . . 5 (𝜑𝐴𝐶)
9110leidd 10594 . . . . 5 (𝜑𝐵𝐵)
92 iccss 12241 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐵)) → (𝐶[,]𝐵) ⊆ (𝐴[,]𝐵))
931, 10, 90, 91, 92syl22anc 1327 . . . 4 (𝜑 → (𝐶[,]𝐵) ⊆ (𝐴[,]𝐵))
94 rescncf 22700 . . . 4 ((𝐶[,]𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐵)) ∈ ((𝐶[,]𝐵)–cn→ℝ)))
9593, 54, 94sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐵)) ∈ ((𝐶[,]𝐵)–cn→ℝ))
96 iccssre 12255 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶[,]𝐵) ⊆ ℝ)
9713, 10, 96syl2anc 693 . . . . . . 7 (𝜑 → (𝐶[,]𝐵) ⊆ ℝ)
9867, 68dvres 23675 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))))
9958, 62, 64, 97, 98syl22anc 1327 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))))
100 iccntr 22624 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵)) = (𝐶(,)𝐵))
10113, 10, 100syl2anc 693 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵)) = (𝐶(,)𝐵))
102101reseq2d 5396 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
10399, 102eqtrd 2656 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
104103dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
105 dmres 5419 . . . . 5 dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)) = ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹))
1061rexrd 10089 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
107 iooss1 12210 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴𝐶) → (𝐶(,)𝐵) ⊆ (𝐴(,)𝐵))
108106, 90, 107syl2anc 693 . . . . . . 7 (𝜑 → (𝐶(,)𝐵) ⊆ (𝐴(,)𝐵))
109108, 83sseqtr4d 3642 . . . . . 6 (𝜑 → (𝐶(,)𝐵) ⊆ dom (ℝ D 𝐹))
110 df-ss 3588 . . . . . 6 ((𝐶(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐶(,)𝐵))
111109, 110sylib 208 . . . . 5 (𝜑 → ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐶(,)𝐵))
112105, 111syl5eq 2668 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)) = (𝐶(,)𝐵))
113104, 112eqtrd 2656 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = (𝐶(,)𝐵))
11413, 10, 50, 95, 113mvth 23755 . 2 (𝜑 → ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)))
115 reeanv 3107 . . 3 (∃𝑥 ∈ (𝐴(,)𝐶)∃𝑦 ∈ (𝐶(,)𝐵)(((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) ↔ (∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))))
11674fveq1d 6193 . . . . . . . 8 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥))
117 fvres 6207 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐶) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
118117adantr 481 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵)) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
119116, 118sylan9eq 2676 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
12013rexrd 10089 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
121 ubicc2 12289 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → 𝐶 ∈ (𝐴[,]𝐶))
122106, 120, 90, 121syl3anc 1326 . . . . . . . . . . 11 (𝜑𝐶 ∈ (𝐴[,]𝐶))
123 fvres 6207 . . . . . . . . . . 11 (𝐶 ∈ (𝐴[,]𝐶) → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) = (𝐹𝐶))
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) = (𝐹𝐶))
125 lbicc2 12288 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → 𝐴 ∈ (𝐴[,]𝐶))
126106, 120, 90, 125syl3anc 1326 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐶))
127 fvres 6207 . . . . . . . . . . 11 (𝐴 ∈ (𝐴[,]𝐶) → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴) = (𝐹𝐴))
128126, 127syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴) = (𝐹𝐴))
129124, 128oveq12d 6668 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) = ((𝐹𝐶) − (𝐹𝐴)))
130129oveq1d 6665 . . . . . . . 8 (𝜑 → ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
131130adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
132119, 131eqeq12d 2637 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴))))
133103fveq1d 6193 . . . . . . . 8 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦))
134 fvres 6207 . . . . . . . . 9 (𝑦 ∈ (𝐶(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
135134adantl 482 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵)) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
136133, 135sylan9eq 2676 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
137 ubicc2 12289 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → 𝐵 ∈ (𝐶[,]𝐵))
138120, 77, 51, 137syl3anc 1326 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐶[,]𝐵))
139 fvres 6207 . . . . . . . . . . 11 (𝐵 ∈ (𝐶[,]𝐵) → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) = (𝐹𝐵))
140138, 139syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) = (𝐹𝐵))
141 lbicc2 12288 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → 𝐶 ∈ (𝐶[,]𝐵))
142120, 77, 51, 141syl3anc 1326 . . . . . . . . . . 11 (𝜑𝐶 ∈ (𝐶[,]𝐵))
143 fvres 6207 . . . . . . . . . . 11 (𝐶 ∈ (𝐶[,]𝐵) → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶) = (𝐹𝐶))
144142, 143syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶) = (𝐹𝐶))
145140, 144oveq12d 6668 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) = ((𝐹𝐵) − (𝐹𝐶)))
146145oveq1d 6665 . . . . . . . 8 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
147146adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
148136, 147eqeq12d 2637 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) ↔ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
149132, 148anbi12d 747 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) ↔ (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))))
150 elioore 12205 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐶) → 𝑥 ∈ ℝ)
151150ad2antrl 764 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 ∈ ℝ)
15213adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝐶 ∈ ℝ)
153 elioore 12205 . . . . . . . . . 10 (𝑦 ∈ (𝐶(,)𝐵) → 𝑦 ∈ ℝ)
154153ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑦 ∈ ℝ)
155 eliooord 12233 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐶) → (𝐴 < 𝑥𝑥 < 𝐶))
156155ad2antrl 764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝐴 < 𝑥𝑥 < 𝐶))
157156simprd 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 < 𝐶)
158 eliooord 12233 . . . . . . . . . . 11 (𝑦 ∈ (𝐶(,)𝐵) → (𝐶 < 𝑦𝑦 < 𝐵))
159158ad2antll 765 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝐶 < 𝑦𝑦 < 𝐵))
160159simpld 475 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝐶 < 𝑦)
161151, 152, 154, 157, 160lttrd 10198 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 < 𝑦)
16280adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
16379sselda 3603 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐵))
164163adantrr 753 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 ∈ (𝐴(,)𝐵))
165108sselda 3603 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
166165adantrl 752 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
167 isorel 6576 . . . . . . . . 9 (((ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊) ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ 𝑦 ∈ (𝐴(,)𝐵))) → (𝑥 < 𝑦 ↔ ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦)))
168162, 164, 166, 167syl12anc 1324 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝑥 < 𝑦 ↔ ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦)))
169161, 168mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦))
170 breq12 4658 . . . . . . 7 ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
171169, 170syl5ibcom 235 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
17253, 122sseldd 3604 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴[,]𝐵))
17360, 172ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ ℝ)
17453, 126sseldd 3604 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (𝐴[,]𝐵))
17560, 174ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
176173, 175resubcld 10458 . . . . . . . . . 10 (𝜑 → ((𝐹𝐶) − (𝐹𝐴)) ∈ ℝ)
17727gt0ne0d 10592 . . . . . . . . . 10 (𝜑 → (1 − 𝑇) ≠ 0)
178176, 9, 177redivcld 10853 . . . . . . . . 9 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) ∈ ℝ)
17993, 138sseldd 3604 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴[,]𝐵))
18060, 179ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
181180, 173resubcld 10458 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐶)) ∈ ℝ)
18242gt0ne0d 10592 . . . . . . . . . 10 (𝜑𝑇 ≠ 0)
183181, 5, 182redivcld 10853 . . . . . . . . 9 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ∈ ℝ)
18410, 1resubcld 10458 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
1851, 10posdifd 10614 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18621, 185mpbid 222 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
187 ltdiv1 10887 . . . . . . . . 9 (((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) ∈ ℝ ∧ (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ∈ ℝ ∧ ((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴))) → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴))))
188178, 183, 184, 186, 187syl112anc 1330 . . . . . . . 8 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴))))
189176recnd 10068 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐹𝐴)) ∈ ℂ)
190189, 15mulcomd 10061 . . . . . . . . . . 11 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) · 𝑇) = (𝑇 · ((𝐹𝐶) − (𝐹𝐴))))
191173recnd 10068 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) ∈ ℂ)
192175recnd 10068 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐴) ∈ ℂ)
19315, 191, 192subdid 10486 . . . . . . . . . . 11 (𝜑 → (𝑇 · ((𝐹𝐶) − (𝐹𝐴))) = ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))))
194190, 193eqtrd 2656 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) · 𝑇) = ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))))
195181recnd 10068 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐵) − (𝐹𝐶)) ∈ ℂ)
1969recnd 10068 . . . . . . . . . . . 12 (𝜑 → (1 − 𝑇) ∈ ℂ)
197195, 196mulcomd 10061 . . . . . . . . . . 11 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) = ((1 − 𝑇) · ((𝐹𝐵) − (𝐹𝐶))))
198180recnd 10068 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐵) ∈ ℂ)
199196, 198, 191subdid 10486 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · ((𝐹𝐵) − (𝐹𝐶))) = (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))))
200197, 199eqtrd 2656 . . . . . . . . . 10 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) = (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))))
201194, 200breq12d 4666 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶)))))
2025, 42jca 554 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇))
2039, 27jca 554 . . . . . . . . . 10 (𝜑 → ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇)))
204 lt2mul2div 10901 . . . . . . . . . 10 (((((𝐹𝐶) − (𝐹𝐴)) ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) ∧ (((𝐹𝐵) − (𝐹𝐶)) ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇)))) → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇)))
205176, 202, 181, 203, 204syl22anc 1327 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇)))
2065, 173remulcld 10070 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · (𝐹𝐶)) ∈ ℝ)
207206recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (𝑇 · (𝐹𝐶)) ∈ ℂ)
2089, 173remulcld 10070 . . . . . . . . . . . . . 14 (𝜑 → ((1 − 𝑇) · (𝐹𝐶)) ∈ ℝ)
209208recnd 10068 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑇) · (𝐹𝐶)) ∈ ℂ)
2105, 175remulcld 10070 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · (𝐹𝐴)) ∈ ℝ)
211210recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (𝑇 · (𝐹𝐴)) ∈ ℂ)
212207, 209, 211addsubd 10413 . . . . . . . . . . . 12 (𝜑 → (((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) − (𝑇 · (𝐹𝐴))) = (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))))
213 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
214 pncan3 10289 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
21515, 213, 214sylancl 694 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 + (1 − 𝑇)) = 1)
216215oveq1d 6665 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 + (1 − 𝑇)) · (𝐹𝐶)) = (1 · (𝐹𝐶)))
21715, 196, 191adddird 10065 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 + (1 − 𝑇)) · (𝐹𝐶)) = ((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))))
218191mulid2d 10058 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝐹𝐶)) = (𝐹𝐶))
219216, 217, 2183eqtr3d 2664 . . . . . . . . . . . . 13 (𝜑 → ((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) = (𝐹𝐶))
220219oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → (((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) − (𝑇 · (𝐹𝐴))) = ((𝐹𝐶) − (𝑇 · (𝐹𝐴))))
221212, 220eqtr3d 2658 . . . . . . . . . . 11 (𝜑 → (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) = ((𝐹𝐶) − (𝑇 · (𝐹𝐴))))
222221breq1d 4663 . . . . . . . . . 10 (𝜑 → ((((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ ((𝐹𝐶) − (𝑇 · (𝐹𝐴))) < ((1 − 𝑇) · (𝐹𝐵))))
223206, 210resubcld 10458 . . . . . . . . . . 11 (𝜑 → ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) ∈ ℝ)
2249, 180remulcld 10070 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · (𝐹𝐵)) ∈ ℝ)
225223, 208, 224ltaddsubd 10627 . . . . . . . . . 10 (𝜑 → ((((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶)))))
226173, 210, 224ltsubadd2d 10625 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝑇 · (𝐹𝐴))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
227222, 225, 2263bitr3d 298 . . . . . . . . 9 (𝜑 → (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
228201, 205, 2273bitr3d 298 . . . . . . . 8 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
229184recnd 10068 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ∈ ℂ)
230186gt0ne0d 10592 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≠ 0)
231189, 196, 229, 177, 230divdiv1d 10832 . . . . . . . . . 10 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / ((1 − 𝑇) · (𝐵𝐴))))
23220oveq2d 6666 . . . . . . . . . . . . 13 (𝜑 → (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)) = (((1 − 𝑇) · 𝐵) − (𝐴 − (𝑇 · 𝐴))))
23311recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → ((1 − 𝑇) · 𝐵) ∈ ℂ)
2346recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
235233, 16, 234subsub3d 10422 . . . . . . . . . . . . 13 (𝜑 → (((1 − 𝑇) · 𝐵) − (𝐴 − (𝑇 · 𝐴))) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
236232, 235eqtrd 2656 . . . . . . . . . . . 12 (𝜑 → (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
237196, 36, 16subdid 10486 . . . . . . . . . . . 12 (𝜑 → ((1 − 𝑇) · (𝐵𝐴)) = (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)))
238234, 233addcomd 10238 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)))
2392, 238syl5eq 2668 . . . . . . . . . . . . 13 (𝜑𝐶 = (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)))
240239oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐴) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
241236, 237, 2403eqtr4d 2666 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · (𝐵𝐴)) = (𝐶𝐴))
242241oveq2d 6666 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) / ((1 − 𝑇) · (𝐵𝐴))) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
243231, 242eqtrd 2656 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
244195, 15, 229, 182, 230divdiv1d 10832 . . . . . . . . . 10 (𝜑 → ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝑇 · (𝐵𝐴))))
24536, 233, 234subsub4d 10423 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − ((1 − 𝑇) · 𝐵)) − (𝑇 · 𝐴)) = (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))))
24640oveq2d 6666 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − ((1 − 𝑇) · 𝐵)) = (𝐵 − (𝐵 − (𝑇 · 𝐵))))
24741recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
24836, 247nncand 10397 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − (𝐵 − (𝑇 · 𝐵))) = (𝑇 · 𝐵))
249246, 248eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − ((1 − 𝑇) · 𝐵)) = (𝑇 · 𝐵))
250249oveq1d 6665 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − ((1 − 𝑇) · 𝐵)) − (𝑇 · 𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
251245, 250eqtr3d 2658 . . . . . . . . . . . 12 (𝜑 → (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
252239oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐶) = (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))))
25315, 36, 16subdid 10486 . . . . . . . . . . . 12 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
254251, 252, 2533eqtr4d 2666 . . . . . . . . . . 11 (𝜑 → (𝐵𝐶) = (𝑇 · (𝐵𝐴)))
255254oveq2d 6666 . . . . . . . . . 10 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝑇 · (𝐵𝐴))))
256244, 255eqtr4d 2659 . . . . . . . . 9 (𝜑 → ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
257243, 256breq12d 4666 . . . . . . . 8 (𝜑 → (((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
258188, 228, 2573bitr3rd 299 . . . . . . 7 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
259258adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
260171, 259sylibd 229 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
261149, 260sylbid 230 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
262261rexlimdvva 3038 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐶)∃𝑦 ∈ (𝐶(,)𝐵)(((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
263115, 262syl5bir 233 . 2 (𝜑 → ((∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
26489, 114, 263mp2and 715 1 (𝜑 → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cin 3573  wss 3574   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  (,)cioo 12175  [,]cicc 12178  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  efcvx  24203  logccv  24409
  Copyright terms: Public domain W3C validator