Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjfi Structured version   Visualization version   GIF version

Theorem iundisjfi 29555
Description: Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 23316. (Contributed by Thierry Arnoux, 15-Feb-2017.)
Hypotheses
Ref Expression
iundisj3.0 𝑛𝐵
iundisj3.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjfi 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . . . 7 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (1..^𝑁)
2 fzossnn 12516 . . . . . . . . . 10 (1..^𝑁) ⊆ ℕ
3 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
42, 3sseqtri 3637 . . . . . . . . 9 (1..^𝑁) ⊆ (ℤ‘1)
51, 4sstri 3612 . . . . . . . 8 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1)
6 rabn0 3958 . . . . . . . . 9 ({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
76biimpri 218 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅)
8 infssuzcl 11772 . . . . . . . 8 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
95, 7, 8sylancr 695 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
101, 9sseldi 3601 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁))
11 nfrab1 3122 . . . . . . . . . . 11 𝑛{𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}
12 nfcv 2764 . . . . . . . . . . 11 𝑛
13 nfcv 2764 . . . . . . . . . . 11 𝑛 <
1411, 12, 13nfinf 8388 . . . . . . . . . 10 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )
15 nfcv 2764 . . . . . . . . . 10 𝑛(1..^𝑁)
1614nfcsb1 3548 . . . . . . . . . . 11 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1716nfcri 2758 . . . . . . . . . 10 𝑛 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
18 csbeq1a 3542 . . . . . . . . . . 11 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1918eleq2d 2687 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2014, 15, 17, 19elrabf 3360 . . . . . . . . 9 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
219, 20sylib 208 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2221simprd 479 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
231, 2sstri 3612 . . . . . . . . . . 11 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℕ
24 nnssre 11024 . . . . . . . . . . 11 ℕ ⊆ ℝ
2523, 24sstri 3612 . . . . . . . . . 10 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℝ
2625, 9sseldi 3601 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2726ltnrd 10171 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
28 eliun 4524 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2926ad2antrr 762 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
30 elfzouz2 12484 . . . . . . . . . . . . . . . . 17 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
31 fzoss2 12496 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3210, 30, 313syl 18 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3332sselda 3603 . . . . . . . . . . . . . . 15 ((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) → 𝑘 ∈ (1..^𝑁))
3433adantr 481 . . . . . . . . . . . . . 14 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ (1..^𝑁))
352, 34sseldi 3601 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3635nnred 11035 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
37 simpr 477 . . . . . . . . . . . . . 14 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
38 nfcv 2764 . . . . . . . . . . . . . . 15 𝑛𝑘
39 iundisj3.0 . . . . . . . . . . . . . . . 16 𝑛𝐵
4039nfcri 2758 . . . . . . . . . . . . . . 15 𝑛 𝑥𝐵
41 iundisj3.1 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘𝐴 = 𝐵)
4241eleq2d 2687 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4338, 15, 40, 42elrabf 3360 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (𝑘 ∈ (1..^𝑁) ∧ 𝑥𝐵))
4434, 37, 43sylanbrc 698 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
45 infssuzle 11771 . . . . . . . . . . . . 13 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
465, 44, 45sylancr 695 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
47 elfzolt2 12479 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4847ad2antlr 763 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4929, 36, 29, 46, 48lelttrd 10195 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
5049ex 450 . . . . . . . . . 10 ((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) → (𝑥𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5150rexlimdva 3031 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5228, 51syl5bi 232 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5327, 52mtod 189 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5422, 53eldifd 3585 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
55 csbeq1 3536 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
56 oveq2 6658 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5756iuneq1d 4545 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5855, 57difeq12d 3729 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
5958eleq2d 2687 . . . . . . 7 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
6059rspcev 3309 . . . . . 6 ((inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6110, 54, 60syl2anc 693 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
62 nfv 1843 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
63 nfcsb1v 3549 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
64 nfcv 2764 . . . . . . . . 9 𝑛(1..^𝑚)
6564, 39nfiun 4548 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
6663, 65nfdif 3731 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
6766nfcri 2758 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
68 csbeq1a 3542 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
69 oveq2 6658 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7069iuneq1d 4545 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7168, 70difeq12d 3729 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7271eleq2d 2687 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
7362, 67, 72cbvrex 3168 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7461, 73sylibr 224 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
75 eldifi 3732 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
7675reximi 3011 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
7774, 76impbii 199 . . 3 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
78 eliun 4524 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
79 eliun 4524 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8077, 78, 793bitr4i 292 . 2 (𝑥 𝑛 ∈ (1..^𝑁)𝐴𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8180eqriv 2619 1 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wnfc 2751  wne 2794  wrex 2913  {crab 2916  csb 3533  cdif 3571  wss 3574  c0 3915   ciun 4520   class class class wbr 4653  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  1c1 9937   < clt 10074  cle 10075  cn 11020  cuz 11687  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  iundisjcnt  29557
  Copyright terms: Public domain W3C validator