Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem6 Structured version   Visualization version   GIF version

Theorem knoppcnlem6 32488
Description: Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem6.n (𝜑𝑁 ∈ ℕ)
knoppcnlem6.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem6.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem6 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem6
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . 2 0 = (ℤ‘0)
2 0zd 11389 . 2 (𝜑 → 0 ∈ ℤ)
3 reex 10027 . . 3 ℝ ∈ V
43a1i 11 . 2 (𝜑 → ℝ ∈ V)
5 knoppcnlem6.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 knoppcnlem6.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
7 knoppcnlem6.n . . 3 (𝜑𝑁 ∈ ℕ)
8 knoppcnlem6.1 . . 3 (𝜑𝐶 ∈ ℝ)
95, 6, 7, 8knoppcnlem5 32487 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 ℝ))
10 nn0ex 11298 . . . 4 0 ∈ V
1110mptex 6486 . . 3 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V
1211a1i 11 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V)
13 eqid 2622 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
15 simpr 477 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
1615oveq2d 6666 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑘))
17 simpr 477 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
18 ovexd 6680 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ V)
1914, 16, 17, 18fvmptd 6288 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) = ((abs‘𝐶)↑𝑘))
208recnd 10068 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2120abscld 14175 . . . . 5 (𝜑 → (abs‘𝐶) ∈ ℝ)
2221adantr 481 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘𝐶) ∈ ℝ)
2322, 17reexpcld 13025 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ ℝ)
2419, 23eqeltrd 2701 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) ∈ ℝ)
25 eqid 2622 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
2625a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
27 simpr 477 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
2827fveq2d 6195 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → ((𝐹𝑧)‘𝑚) = ((𝐹𝑧)‘𝑘))
2928mpteq2dv 4745 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
3017adantrr 753 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑘 ∈ ℕ0)
313mptex 6486 . . . . . . 7 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V)
3326, 29, 30, 32fvmptd 6288 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
34 simpr 477 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
3534fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → (𝐹𝑧) = (𝐹𝑤))
3635fveq1d 6193 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → ((𝐹𝑧)‘𝑘) = ((𝐹𝑤)‘𝑘))
37 simprr 796 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
38 fvexd 6203 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝐹𝑤)‘𝑘) ∈ V)
3933, 36, 37, 38fvmptd 6288 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤) = ((𝐹𝑤)‘𝑘))
4039fveq2d 6195 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) = (abs‘((𝐹𝑤)‘𝑘)))
417adantr 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑁 ∈ ℕ)
428adantr 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝐶 ∈ ℝ)
435, 6, 41, 42, 37, 30knoppcnlem4 32486 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘((𝐹𝑤)‘𝑘)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4440, 43eqbrtrd 4675 . 2 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4521recnd 10068 . . . 4 (𝜑 → (abs‘𝐶) ∈ ℂ)
46 absidm 14063 . . . . . 6 (𝐶 ∈ ℂ → (abs‘(abs‘𝐶)) = (abs‘𝐶))
4720, 46syl 17 . . . . 5 (𝜑 → (abs‘(abs‘𝐶)) = (abs‘𝐶))
48 knoppcnlem6.2 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
4947, 48eqbrtrd 4675 . . . 4 (𝜑 → (abs‘(abs‘𝐶)) < 1)
5045, 49, 19geolim 14601 . . 3 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))))
51 seqex 12803 . . . 4 seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ V
52 ovex 6678 . . . 4 (1 / (1 − (abs‘𝐶))) ∈ V
5351, 52breldm 5329 . . 3 (seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
5450, 53syl 17 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
551, 2, 4, 9, 12, 24, 44, 54mtest 24158 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cfl 12591  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ulm 24131
This theorem is referenced by:  knoppcnlem9  32491
  Copyright terms: Public domain W3C validator