MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim Structured version   Visualization version   GIF version

Theorem geolim 14601
Description: The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem geolim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . 3 0 = (ℤ‘0)
2 0zd 11389 . . 3 (𝜑 → 0 ∈ ℤ)
3 geolim.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4 geolim.2 . . . . . 6 (𝜑 → (abs‘𝐴) < 1)
53, 4expcnv 14596 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
6 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
7 subcl 10280 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
86, 3, 7sylancr 695 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℂ)
9 1re 10039 . . . . . . . . . . . 12 1 ∈ ℝ
109ltnri 10146 . . . . . . . . . . 11 ¬ 1 < 1
11 fveq2 6191 . . . . . . . . . . . . 13 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
12 abs1 14037 . . . . . . . . . . . . 13 (abs‘1) = 1
1311, 12syl6eq 2672 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = 1)
1413breq1d 4663 . . . . . . . . . . 11 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
1510, 14mtbiri 317 . . . . . . . . . 10 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
1615necon2ai 2823 . . . . . . . . 9 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
174, 16syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 1)
1817necomd 2849 . . . . . . 7 (𝜑 → 1 ≠ 𝐴)
19 subeq0 10307 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
206, 3, 19sylancr 695 . . . . . . . 8 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120necon3bid 2838 . . . . . . 7 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
2218, 21mpbird 247 . . . . . 6 (𝜑 → (1 − 𝐴) ≠ 0)
233, 8, 22divcld 10801 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
24 nn0ex 11298 . . . . . . 7 0 ∈ V
2524mptex 6486 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V
2625a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V)
27 oveq2 6658 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
28 eqid 2622 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
29 ovex 6678 . . . . . . . 8 (𝐴𝑗) ∈ V
3027, 28, 29fvmpt 6282 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
3130adantl 482 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
32 expcl 12878 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
333, 32sylan 488 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3431, 33eqeltrd 2701 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
35 expp1 12867 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
363, 35sylan 488 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
373adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3833, 37mulcomd 10061 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) · 𝐴) = (𝐴 · (𝐴𝑗)))
3936, 38eqtrd 2656 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = (𝐴 · (𝐴𝑗)))
4039oveq1d 6665 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)))
418adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ∈ ℂ)
4222adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ≠ 0)
4337, 33, 41, 42div23d 10838 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
4440, 43eqtrd 2656 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
45 oveq1 6657 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
4645oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴↑(𝑛 + 1)) = (𝐴↑(𝑗 + 1)))
4746oveq1d 6665 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
48 eqid 2622 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))
49 ovex 6678 . . . . . . . 8 ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ V
5047, 48, 49fvmpt 6282 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5150adantl 482 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5231oveq2d 6666 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
5344, 51, 523eqtr4d 2666 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)))
541, 2, 5, 23, 26, 34, 53climmulc2 14367 . . . 4 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ ((𝐴 / (1 − 𝐴)) · 0))
5523mul01d 10235 . . . 4 (𝜑 → ((𝐴 / (1 − 𝐴)) · 0) = 0)
5654, 55breqtrd 4679 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ 0)
578, 22reccld 10794 . . 3 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
58 seqex 12803 . . . 4 seq0( + , 𝐹) ∈ V
5958a1i 11 . . 3 (𝜑 → seq0( + , 𝐹) ∈ V)
60 peano2nn0 11333 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
61 expcl 12878 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
623, 60, 61syl2an 494 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
6362, 41, 42divcld 10801 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ)
6451, 63eqeltrd 2701 . . 3 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) ∈ ℂ)
65 nn0cn 11302 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
6665adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
67 pncan 10287 . . . . . . 7 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
6866, 6, 67sylancl 694 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) − 1) = 𝑗)
6968oveq2d 6666 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (0...((𝑗 + 1) − 1)) = (0...𝑗))
7069sumeq1d 14431 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = Σ𝑘 ∈ (0...𝑗)(𝐴𝑘))
716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
7271, 62, 41, 42divsubdird 10840 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7317adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ≠ 1)
7460adantl 482 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
7537, 73, 74geoser 14599 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)))
7651oveq2d 6666 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7772, 75, 763eqtr4d 2666 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
78 simpll 790 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝜑)
79 elfznn0 12433 . . . . . . 7 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
8079adantl 482 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
81 geolim.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
8278, 80, 81syl2anc 693 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐹𝑘) = (𝐴𝑘))
83 simpr 477 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
8483, 1syl6eleq 2711 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
8578, 3syl 17 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
8685, 80expcld 13008 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐴𝑘) ∈ ℂ)
8782, 84, 86fsumser 14461 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)(𝐴𝑘) = (seq0( + , 𝐹)‘𝑗))
8870, 77, 873eqtr3rd 2665 . . 3 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐹)‘𝑗) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
891, 2, 56, 57, 59, 64, 88climsubc2 14369 . 2 (𝜑 → seq0( + , 𝐹) ⇝ ((1 / (1 − 𝐴)) − 0))
9057subid1d 10381 . 2 (𝜑 → ((1 / (1 − 𝐴)) − 0) = (1 / (1 − 𝐴)))
9189, 90breqtrd 4679 1 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  0cn0 11292  cuz 11687  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  geolim2  14602  georeclim  14603  geomulcvg  14607  geoisum  14608  cvgrat  14615  eflegeo  14851  geolim3  24094  abelthlem5  24189  logtayllem  24405  zetacvg  24741  knoppcnlem6  32488
  Copyright terms: Public domain W3C validator