Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem9 Structured version   Visualization version   GIF version

Theorem knoppcnlem9 32491
Description: Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem9.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppcnlem9.n (𝜑𝑁 ∈ ℕ)
knoppcnlem9.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem9.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem9 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑖,𝐹,𝑚,𝑤,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑚,𝑤,𝑧,𝑛,𝑦   𝑥,𝑖,𝑚,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧,𝑤,𝑖)   𝑇(𝑥,𝑧,𝑤,𝑖,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑤,𝑖,𝑚)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑖,𝑚,𝑛)

Proof of Theorem knoppcnlem9
Dummy variables 𝑓 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem9.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem9.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem9.n . . . 4 (𝜑𝑁 ∈ ℕ)
4 knoppcnlem9.1 . . . 4 (𝜑𝐶 ∈ ℝ)
5 knoppcnlem9.2 . . . 4 (𝜑 → (abs‘𝐶) < 1)
61, 2, 3, 4, 5knoppcnlem6 32488 . . 3 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
7 seqex 12803 . . . 4 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ V
87eldm 5321 . . 3 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ) ↔ ∃𝑓seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
96, 8sylib 208 . 2 (𝜑 → ∃𝑓seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
10 simpr 477 . . . . 5 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
11 ulmcl 24135 . . . . . . . 8 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓:ℝ⟶ℂ)
1211feqmptd 6249 . . . . . . 7 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
1312adantl 482 . . . . . 6 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
14 nn0uz 11722 . . . . . . . . 9 0 = (ℤ‘0)
15 0zd 11389 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ)
16 eqidd 2623 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
173ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
184ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
19 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
20 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
211, 2, 17, 18, 19, 20knoppcnlem3 32485 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2221adantllr 755 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2322recnd 10068 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℂ)
241, 2, 3, 4knoppcnlem8 32490 . . . . . . . . . . 11 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑𝑚 ℝ))
2524ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑𝑚 ℝ))
26 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
27 seqex 12803 . . . . . . . . . . 11 seq0( + , (𝐹𝑤)) ∈ V
2827a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ V)
293ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
304ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
31 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
321, 2, 29, 30, 31knoppcnlem7 32489 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3332adantllr 755 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3433fveq1d 6193 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤))
35 eqid 2622 . . . . . . . . . . . . 13 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
3635a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
37 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
3837seqeq3d 12809 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝑤)))
3938fveq1d 6193 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝑤))‘𝑘))
4039adantl 482 . . . . . . . . . . . 12 (((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑣 = 𝑤) → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝑤))‘𝑘))
4126adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑤 ∈ ℝ)
42 fvexd 6203 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( + , (𝐹𝑤))‘𝑘) ∈ V)
4336, 40, 41, 42fvmptd 6288 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
4434, 43eqtrd 2656 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
45 simplr 792 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
4614, 15, 25, 26, 28, 44, 45ulmclm 24141 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑓𝑤))
4714, 15, 16, 23, 46isumclim 14488 . . . . . . . 8 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = (𝑓𝑤))
4847eqcomd 2628 . . . . . . 7 (((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → (𝑓𝑤) = Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4948mpteq2dva 4744 . . . . . 6 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ (𝑓𝑤)) = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
50 knoppcnlem9.w . . . . . . . 8 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
5150a1i 11 . . . . . . 7 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
5251eqcomd 2628 . . . . . 6 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = 𝑊)
5313, 49, 523eqtrd 2660 . . . . 5 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = 𝑊)
5410, 53breqtrd 4679 . . . 4 ((𝜑 ∧ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
5554ex 450 . . 3 (𝜑 → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
5655exlimdv 1861 . 2 (𝜑 → (∃𝑓seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
579, 56mpd 15 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cfl 12591  seqcseq 12801  cexp 12860  abscabs 13974  Σcsu 14416  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ulm 24131
This theorem is referenced by:  knoppcn  32494  knoppndvlem4  32506
  Copyright terms: Public domain W3C validator