MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberg Structured version   Visualization version   GIF version

Theorem konigsberg 27119
Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 27101 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberg (EulerPaths‘𝐺) = ∅

Proof of Theorem konigsberg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 konigsberg.v . . . 4 𝑉 = (0...3)
2 konigsberg.e . . . 4 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . . 4 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsberglem5 27118 . . 3 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
5 elpri 4197 . . . 4 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2))
6 2pos 11112 . . . . . . 7 0 < 2
7 0re 10040 . . . . . . . 8 0 ∈ ℝ
8 2re 11090 . . . . . . . 8 2 ∈ ℝ
97, 8ltnsymi 10156 . . . . . . 7 (0 < 2 → ¬ 2 < 0)
106, 9ax-mp 5 . . . . . 6 ¬ 2 < 0
11 breq2 4657 . . . . . 6 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0))
1210, 11mtbiri 317 . . . . 5 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
138ltnri 10146 . . . . . 6 ¬ 2 < 2
14 breq2 4657 . . . . . 6 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2))
1513, 14mtbiri 317 . . . . 5 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
1612, 15jaoi 394 . . . 4 (((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
175, 16syl 17 . . 3 ((#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
184, 17mt2 191 . 2 ¬ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}
191, 2, 3konigsbergumgr 27112 . . . . 5 𝐺 ∈ UMGraph
20 umgrupgr 25998 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph )
2119, 20ax-mp 5 . . . 4 𝐺 ∈ UPGraph
223fveq2i 6194 . . . . . 6 (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩)
23 ovex 6678 . . . . . . . 8 (0...3) ∈ V
241, 23eqeltri 2697 . . . . . . 7 𝑉 ∈ V
25 s7cli 13630 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
262, 25eqeltri 2697 . . . . . . 7 𝐸 ∈ Word V
27 opvtxfv 25884 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
2824, 26, 27mp2an 708 . . . . . 6 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
2922, 28eqtr2i 2645 . . . . 5 𝑉 = (Vtx‘𝐺)
3029eulerpath 27101 . . . 4 ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
3121, 30mpan 706 . . 3 ((EulerPaths‘𝐺) ≠ ∅ → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
3231necon1bi 2822 . 2 (¬ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅)
3318, 32ax-mp 5 1 (EulerPaths‘𝐺) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  c0 3915  {cpr 4179  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   < clt 10074  2c2 11070  3c3 11071  ...cfz 12326  #chash 13117  Word cword 13291  ⟨“cs7 13591  cdvds 14983  Vtxcvtx 25874   UPGraph cupgr 25975   UMGraph cumgr 25976  VtxDegcvtxdg 26361  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-s5 13596  df-s6 13597  df-s7 13598  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator