Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcf1o Structured version   Visualization version   GIF version

Theorem lcf1o 36840
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcf1o (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   ,𝑓,𝑘,𝑣   𝑓,𝐿   𝑅,𝑓,𝑘,𝑣   𝑓,𝐹   𝑓,𝑉   · ,𝑓,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcf1o
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.h . 2 𝐻 = (LHyp‘𝐾)
2 lcf1o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lcf1o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcf1o.v . 2 𝑉 = (Base‘𝑈)
5 lcf1o.a . 2 + = (+g𝑈)
6 lcf1o.t . 2 · = ( ·𝑠𝑈)
7 lcf1o.s . 2 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . 2 𝑅 = (Base‘𝑆)
9 lcf1o.z . 2 0 = (0g𝑈)
10 lcf1o.f . 2 𝐹 = (LFnl‘𝑈)
11 lcf1o.l . 2 𝐿 = (LKer‘𝑈)
12 lcf1o.d . 2 𝐷 = (LDual‘𝑈)
13 lcf1o.q . 2 𝑄 = (0g𝐷)
14 lcf1o.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
16 oveq1 6657 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥)))
1716eqeq2d 2632 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥))))
1817cbvrexv 3172 . . . . . . . . 9 (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)))
19 oveq1 6657 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2019oveq2d 6666 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
2120eqeq2d 2632 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥))))
2221rexbidv 3052 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2318, 22syl5bb 272 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))))
2423cbvriotav 6622 . . . . . . 7 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))
25 eqeq1 2626 . . . . . . . . 9 (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
2625rexbidv 3052 . . . . . . . 8 (𝑣 = 𝑢 → (∃𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2726riotabidv 6613 . . . . . . 7 (𝑣 = 𝑢 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2824, 27syl5eq 2668 . . . . . 6 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
2928cbvmptv 4750 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
30 sneq 4187 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130fveq2d 6195 . . . . . . . 8 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
32 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦))
3332oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦)))
3433eqeq2d 2632 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
3531, 34rexeqbidv 3153 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3635riotabidv 6613 . . . . . 6 (𝑥 = 𝑦 → (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
3736mpteq2dv 4745 . . . . 5 (𝑥 = 𝑦 → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3829, 37syl5eq 2668 . . . 4 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
3938cbvmptv 4750 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
4015, 39eqtri 2644 . 2 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
41 lcflo.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41lcfrlem9 36839 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  cdif 3571  {csn 4177  cmpt 4729  1-1-ontowf1o 5887  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LFnlclfn 34344  LKerclk 34372  LDualcld 34410  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684
This theorem is referenced by:  lcfrlem13  36844  hvmap1o  37052
  Copyright terms: Public domain W3C validator