Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Visualization version   GIF version

Theorem lcfrlem2 36832
Description: Lemma for lcfr 36874. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6 𝑆 = (Scalar‘𝑈)
2 eqid 2622 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 lcfrlem1.f . . . . . 6 𝐹 = (LFnl‘𝑈)
4 lcfrlem2.l . . . . . 6 𝐿 = (LKer‘𝑈)
5 lcfrlem1.d . . . . . 6 𝐷 = (LDual‘𝑈)
6 lcfrlem1.t . . . . . 6 · = ( ·𝑠𝐷)
7 lcfrlem1.u . . . . . 6 (𝜑𝑈 ∈ LVec)
8 lcfrlem1.g . . . . . 6 (𝜑𝐺𝐹)
9 lveclmod 19106 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
107, 9syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
111lmodring 18871 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
131lvecdrng 19105 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
147, 13syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
15 lcfrlem1.x . . . . . . . . 9 (𝜑𝑋𝑉)
16 lcfrlem1.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
171, 2, 16, 3lflcl 34351 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
187, 8, 15, 17syl3anc 1326 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
19 lcfrlem1.n . . . . . . . 8 (𝜑 → (𝐺𝑋) ≠ 0 )
20 lcfrlem1.z . . . . . . . . 9 0 = (0g𝑆)
21 lcfrlem1.i . . . . . . . . 9 𝐼 = (invr𝑆)
222, 20, 21drnginvrcl 18764 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2314, 18, 19, 22syl3anc 1326 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
24 lcfrlem1.e . . . . . . . 8 (𝜑𝐸𝐹)
251, 2, 16, 3lflcl 34351 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
267, 24, 15, 25syl3anc 1326 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
27 lcfrlem1.q . . . . . . . 8 × = (.r𝑆)
282, 27ringcl 18561 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
2912, 23, 26, 28syl3anc 1326 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 34455 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 34426 . . . . . 6 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
32 ringgrp 18552 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3312, 32syl 17 . . . . . . 7 (𝜑𝑆 ∈ Grp)
34 eqid 2622 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
352, 34ringidcl 18568 . . . . . . . 8 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
3612, 35syl 17 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
37 eqid 2622 . . . . . . . 8 (invg𝑆) = (invg𝑆)
382, 37grpinvcl 17467 . . . . . . 7 ((𝑆 ∈ Grp ∧ (1r𝑆) ∈ (Base‘𝑆)) → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
3933, 36, 38syl2anc 693 . . . . . 6 (𝜑 → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 34455 . . . . 5 (𝜑 → (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
4130, 40sstrd 3613 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
42 sslin 3839 . . . 4 ((𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4341, 42syl 17 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
44 eqid 2622 . . . 4 (+g𝐷) = (+g𝐷)
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 34426 . . . 4 (𝜑 → (((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
463, 4, 5, 44, 10, 24, 45lkrin 34451 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4743, 46sstrd 3613 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
48 lcfrlem1.h . . . 4 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
4948fveq2i 6194 . . 3 (𝐿𝐻) = (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
50 lcfrlem1.m . . . . 5 = (-g𝐷)
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 34442 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) = (𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
5251fveq2d 6195 . . 3 (𝜑 → (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
5349, 52syl5req 2669 . 2 (𝜑 → (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) = (𝐿𝐻))
5447, 53sseqtrd 3641 1 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  1rcur 18501  Ringcrg 18547  invrcinvr 18671  DivRingcdr 18747  LModclmod 18863  LVecclvec 19102  LFnlclfn 34344  LKerclk 34372  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lvec 19103  df-lfl 34345  df-lkr 34373  df-ldual 34411
This theorem is referenced by:  lcfrlem35  36866
  Copyright terms: Public domain W3C validator