MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmgcd Structured version   Visualization version   GIF version

Theorem lcmgcd 15320
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which (𝑀 gcd 𝑁) = 1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic 1arith 15631 or of Bézout's identity bezout 15260; see e.g. https://proofwiki.org/wiki/Product_of_GCD_and_LCM and https://math.stackexchange.com/a/470827. This proof uses the latter to first confirm it for positive integers 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 15307 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 15228 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
21nn0cnd 11353 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
32mul02d 10234 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
4 0z 11388 . . . . . . . . . 10 0 ∈ ℤ
5 lcmcom 15306 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁))
64, 5mpan2 707 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁))
7 lcm0val 15307 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
86, 7eqtr3d 2658 . . . . . . . 8 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
98adantl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = 0)
109oveq1d 6665 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
11 zcn 11382 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantl 482 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1312mul02d 10234 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
1413abs00bd 14031 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(0 · 𝑁)) = 0)
153, 10, 143eqtr4d 2666 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
1615adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
17 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1817oveq1d 6665 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
1918oveq1d 6665 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((0 lcm 𝑁) · (𝑀 gcd 𝑁)))
2017oveq1d 6665 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = (0 · 𝑁))
2120fveq2d 6195 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(0 · 𝑁)))
2216, 19, 213eqtr4d 2666 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
23 lcm0val 15307 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2423adantr 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 0) = 0)
2524oveq1d 6665 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
26 zcn 11382 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2726adantr 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
2827mul01d 10235 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
2928abs00bd 14031 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 0)) = 0)
303, 25, 293eqtr4d 2666 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
3130adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
32 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
3332oveq2d 6666 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
3433oveq1d 6665 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 0) · (𝑀 gcd 𝑁)))
3532oveq2d 6666 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
3635fveq2d 6195 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑀 · 0)))
3731, 34, 363eqtr4d 2666 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
3822, 37jaodan 826 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
39 neanior 2886 . . . . 5 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
40 nnabscl 14065 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
41 nnabscl 14065 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
4240, 41anim12i 590 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4342an4s 869 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4439, 43sylan2br 493 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
45 lcmgcdlem 15319 . . . . 5 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ ((0 ∈ ℕ ∧ ((abs‘𝑀) ∥ 0 ∧ (abs‘𝑁) ∥ 0)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ 0)))
4645simpld 475 . . . 4 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
4744, 46syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
48 lcmabs 15318 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
49 gcdabs 15250 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
5048, 49oveq12d 6668 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
5150adantr 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
52 absidm 14063 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
53 absidm 14063 . . . . . . 7 (𝑁 ∈ ℂ → (abs‘(abs‘𝑁)) = (abs‘𝑁))
5452, 53oveqan12d 6669 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
5526, 11, 54syl2an 494 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
56 nn0abscl 14052 . . . . . . . 8 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
5756nn0cnd 11353 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
5857adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℂ)
59 nn0abscl 14052 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
6059nn0cnd 11353 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℂ)
6160adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑁) ∈ ℂ)
6258, 61absmuld 14193 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))))
6327, 12absmuld 14193 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
6455, 62, 633eqtr4d 2666 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6564adantr 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6647, 51, 653eqtr3d 2664 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
6738, 66pm2.61dan 832 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   · cmul 9941  cn 11020  cz 11377  abscabs 13974  cdvds 14983   gcd cgcd 15216   lcm clcm 15301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-lcm 15303
This theorem is referenced by:  lcmid  15322  lcm1  15323  lcmgcdnn  15324  nzprmdif  38518
  Copyright terms: Public domain W3C validator