Proof of Theorem lgsdir2lem3
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → 𝐴 ∈
ℤ) |
| 2 | | 8nn 11191 |
. . . 4
⊢ 8 ∈
ℕ |
| 3 | | zmodfz 12692 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐴 mod 8)
∈ (0...(8 − 1))) |
| 4 | 1, 2, 3 | sylancl 694 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 −
1))) |
| 5 | | 8cn 11106 |
. . . . 5
⊢ 8 ∈
ℂ |
| 6 | | ax-1cn 9994 |
. . . . 5
⊢ 1 ∈
ℂ |
| 7 | | 7cn 11104 |
. . . . 5
⊢ 7 ∈
ℂ |
| 8 | 6, 7 | addcomi 10227 |
. . . . . 6
⊢ (1 + 7) =
(7 + 1) |
| 9 | | df-8 11085 |
. . . . . 6
⊢ 8 = (7 +
1) |
| 10 | 8, 9 | eqtr4i 2647 |
. . . . 5
⊢ (1 + 7) =
8 |
| 11 | 5, 6, 7, 10 | subaddrii 10370 |
. . . 4
⊢ (8
− 1) = 7 |
| 12 | 11 | oveq2i 6661 |
. . 3
⊢ (0...(8
− 1)) = (0...7) |
| 13 | 4, 12 | syl6eleq 2711 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈
(0...7)) |
| 14 | | neg1z 11413 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
| 15 | | 2z 11409 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 16 | | dvds0 14997 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∥ 0) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ∥
0 |
| 18 | | 1pneg1e0 11129 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
| 19 | | neg1cn 11124 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
| 20 | 6, 19 | addcomi 10227 |
. . . . . . . . . 10
⊢ (1 + -1)
= (-1 + 1) |
| 21 | 18, 20 | eqtr3i 2646 |
. . . . . . . . 9
⊢ 0 = (-1 +
1) |
| 22 | 17, 21 | breqtri 4678 |
. . . . . . . 8
⊢ 2 ∥
(-1 + 1) |
| 23 | | noel 3919 |
. . . . . . . . . . 11
⊢ ¬
(𝐴 mod 8) ∈
∅ |
| 24 | 23 | pm2.21i 116 |
. . . . . . . . . 10
⊢ ((𝐴 mod 8) ∈ ∅ →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) |
| 25 | | neg1lt0 11127 |
. . . . . . . . . . 11
⊢ -1 <
0 |
| 26 | | 0z 11388 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 27 | | fzn 12357 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) =
∅)) |
| 28 | 26, 14, 27 | mp2an 708 |
. . . . . . . . . . 11
⊢ (-1 <
0 ↔ (0...-1) = ∅) |
| 29 | 25, 28 | mpbi 220 |
. . . . . . . . . 10
⊢ (0...-1)
= ∅ |
| 30 | 24, 29 | eleq2s 2719 |
. . . . . . . . 9
⊢ ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) |
| 31 | 30 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) |
| 32 | 14, 22, 31 | 3pm3.2i 1239 |
. . . . . . 7
⊢ (-1
∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
| 33 | | 1e0p1 11552 |
. . . . . . 7
⊢ 1 = (0 +
1) |
| 34 | | ssun1 3776 |
. . . . . . . 8
⊢ {1, 7}
⊆ ({1, 7} ∪ {3, 5}) |
| 35 | | 1ex 10035 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 36 | 35 | prid1 4297 |
. . . . . . . 8
⊢ 1 ∈
{1, 7} |
| 37 | 34, 36 | sselii 3600 |
. . . . . . 7
⊢ 1 ∈
({1, 7} ∪ {3, 5}) |
| 38 | 32, 21, 33, 37 | lgsdir2lem2 25051 |
. . . . . 6
⊢ (1 ∈
ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
| 39 | | df-2 11079 |
. . . . . 6
⊢ 2 = (1 +
1) |
| 40 | | df-3 11080 |
. . . . . 6
⊢ 3 = (2 +
1) |
| 41 | | ssun2 3777 |
. . . . . . 7
⊢ {3, 5}
⊆ ({1, 7} ∪ {3, 5}) |
| 42 | | 3ex 11096 |
. . . . . . . 8
⊢ 3 ∈
V |
| 43 | 42 | prid1 4297 |
. . . . . . 7
⊢ 3 ∈
{3, 5} |
| 44 | 41, 43 | sselii 3600 |
. . . . . 6
⊢ 3 ∈
({1, 7} ∪ {3, 5}) |
| 45 | 38, 39, 40, 44 | lgsdir2lem2 25051 |
. . . . 5
⊢ (3 ∈
ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
| 46 | | df-4 11081 |
. . . . 5
⊢ 4 = (3 +
1) |
| 47 | | df-5 11082 |
. . . . 5
⊢ 5 = (4 +
1) |
| 48 | | 5nn 11188 |
. . . . . . . 8
⊢ 5 ∈
ℕ |
| 49 | 48 | elexi 3213 |
. . . . . . 7
⊢ 5 ∈
V |
| 50 | 49 | prid2 4298 |
. . . . . 6
⊢ 5 ∈
{3, 5} |
| 51 | 41, 50 | sselii 3600 |
. . . . 5
⊢ 5 ∈
({1, 7} ∪ {3, 5}) |
| 52 | 45, 46, 47, 51 | lgsdir2lem2 25051 |
. . . 4
⊢ (5 ∈
ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
| 53 | | df-6 11083 |
. . . 4
⊢ 6 = (5 +
1) |
| 54 | | df-7 11084 |
. . . 4
⊢ 7 = (6 +
1) |
| 55 | | 7nn 11190 |
. . . . . . 7
⊢ 7 ∈
ℕ |
| 56 | 55 | elexi 3213 |
. . . . . 6
⊢ 7 ∈
V |
| 57 | 56 | prid2 4298 |
. . . . 5
⊢ 7 ∈
{1, 7} |
| 58 | 34, 57 | sselii 3600 |
. . . 4
⊢ 7 ∈
({1, 7} ∪ {3, 5}) |
| 59 | 52, 53, 54, 58 | lgsdir2lem2 25051 |
. . 3
⊢ (7 ∈
ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
| 60 | 59 | simp3i 1072 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) |
| 61 | 13, 60 | mpd 15 |
1
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})) |