MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Visualization version   GIF version

Theorem lgsdir2 25055
Description: The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 10032 . . . . . 6 0 ∈ ℂ
2 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
3 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
42, 3keepel 4155 . . . . . 6 if((𝐵 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
51, 4keepel 4155 . . . . 5 if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
65mul02i 10225 . . . 4 (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = 0
7 iftrue 4092 . . . . . 6 (2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
87adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
98oveq1d 6665 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
10 2z 11409 . . . . . . 7 2 ∈ ℤ
11 dvdsmultr1 15019 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1210, 11mp3an1 1411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1312imp 445 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → 2 ∥ (𝐴 · 𝐵))
1413iftrued 4094 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
156, 9, 143eqtr4a 2682 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
162, 3keepel 4155 . . . . . 6 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
171, 16keepel 4155 . . . . 5 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
1817mul01i 10226 . . . 4 (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0) = 0
19 iftrue 4092 . . . . . 6 (2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2019adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2120oveq2d 6666 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0))
22 dvdsmultr2 15021 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2310, 22mp3an1 1411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2423imp 445 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 · 𝐵))
2524iftrued 4094 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
2618, 21, 253eqtr4a 2682 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
274mulid2i 10043 . . . . . 6 (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
28 iftrue 4092 . . . . . . . 8 ((𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
2928adantl 482 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
3029oveq1d 6665 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
31 lgsdir2lem4 25053 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3231adantlr 751 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3332ifbid 4108 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
3427, 30, 333eqtr4a 2682 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
3516mulid1i 10042 . . . . . 6 (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
36 iftrue 4092 . . . . . . . 8 ((𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3736adantl 482 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3837oveq2d 6666 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1))
39 zcn 11382 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
40 zcn 11382 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
41 mulcom 10022 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4239, 40, 41syl2an 494 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4443oveq1d 6665 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → ((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8))
4544eleq1d 2686 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ ((𝐵 · 𝐴) mod 8) ∈ {1, 7}))
46 lgsdir2lem4 25053 . . . . . . . . . 10 (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4746ancom1s 847 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4847adantlr 751 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4945, 48bitrd 268 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
5049ifbid 4108 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
5135, 38, 503eqtr4a 2682 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
52 neg1mulneg1e1 11245 . . . . . 6 (-1 · -1) = 1
53 iffalse 4095 . . . . . . . 8 (¬ (𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
54 iffalse 4095 . . . . . . . 8 (¬ (𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = -1)
5553, 54oveqan12d 6669 . . . . . . 7 ((¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
5655adantl 482 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
57 lgsdir2lem3 25052 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
5857ad2ant2r 783 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
59 elun 3753 . . . . . . . . . . 11 ((𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6058, 59sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6160orcanai 952 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {3, 5})
62 lgsdir2lem3 25052 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
6362ad2ant2l 782 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
64 elun 3753 . . . . . . . . . . 11 ((𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6563, 64sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6665orcanai 952 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (𝐵 mod 8) ∈ {3, 5})
6761, 66anim12dan 882 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}))
68 lgsdir2lem5 25054 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
6968adantlr 751 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7067, 69syldan 487 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7170iftrued 4094 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = 1)
7252, 56, 713eqtr4a 2682 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
7334, 51, 72pm2.61ddan 833 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
74 iffalse 4095 . . . . . 6 (¬ 2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
75 iffalse 4095 . . . . . 6 (¬ 2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
7674, 75oveqan12d 6669 . . . . 5 ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
7776adantl 482 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
78 ioran 511 . . . . . 6 (¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵) ↔ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵))
79 2prm 15405 . . . . . . . . 9 2 ∈ ℙ
80 euclemma 15425 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8179, 80mp3an1 1411 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8281notbid 308 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8382biimpar 502 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
8478, 83sylan2br 493 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
85 iffalse 4095 . . . . 5 (¬ 2 ∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8684, 85syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8773, 77, 863eqtr4d 2666 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
8815, 26, 87pm2.61ddan 833 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
89 lgs2 25039 . . 3 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
90 lgs2 25039 . . 3 (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
9189, 90oveqan12d 6669 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2) · (𝐵 /L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
92 zmulcl 11426 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
93 lgs2 25039 . . 3 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9492, 93syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9588, 91, 943eqtr4rd 2667 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cun 3572  ifcif 4086  {cpr 4179   class class class wbr 4653  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941  -cneg 10267  2c2 11070  3c3 11071  5c5 11073  7c7 11075  8c8 11076  cz 11377   mod cmo 12668  cdvds 14983  cprime 15385   /L clgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  lgsdirprm  25056
  Copyright terms: Public domain W3C validator