Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   GIF version

Theorem lidldomn1 41921
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l 𝐿 = (LIdeal‘𝑅)
lidldomn1.t · = (.r𝑅)
lidldomn1.1 1 = (1r𝑅)
lidldomn1.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomn1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑈   𝑥, ·
Allowed substitution hints:   𝑅(𝑥)   1 (𝑥)   𝐿(𝑥)   0 (𝑥)

Proof of Theorem lidldomn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 domnring 19296 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
213ad2ant1 1082 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Ring)
3 simp2l 1087 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈𝐿)
4 simp2r 1088 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ≠ { 0 })
5 lidldomn1.l . . . 4 𝐿 = (LIdeal‘𝑅)
6 lidldomn1.0 . . . 4 0 = (0g𝑅)
75, 6lidlnz 19228 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿𝑈 ≠ { 0 }) → ∃𝑦𝑈 𝑦0 )
82, 3, 4, 7syl3anc 1326 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ∃𝑦𝑈 𝑦0 )
9 oveq2 6658 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐼 · 𝑥) = (𝐼 · 𝑦))
10 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼 · 𝑦) = 𝑦))
12 oveq1 6657 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐼) = (𝑦 · 𝐼))
1312, 10eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑦 · 𝐼) = 𝑦))
1411, 13anbi12d 747 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦)))
1514rspcva 3307 . . . . . . . 8 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦))
162adantr 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Ring)
17 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1817, 5lidlss 19210 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
1918adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐿𝑈 ≠ { 0 }) → 𝑈 ⊆ (Base‘𝑅))
20193ad2ant2 1083 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ⊆ (Base‘𝑅))
2120sseld 3602 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈𝑦 ∈ (Base‘𝑅)))
2221com12 32 . . . . . . . . . . . . . . . 16 (𝑦𝑈 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2322adantr 481 . . . . . . . . . . . . . . 15 ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2423impcom 446 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑦 ∈ (Base‘𝑅))
25 lidldomn1.t . . . . . . . . . . . . . . 15 · = (.r𝑅)
26 lidldomn1.1 . . . . . . . . . . . . . . 15 1 = (1r𝑅)
2717, 25, 26ringlidm 18571 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) = 𝑦)
2816, 24, 27syl2anc 693 . . . . . . . . . . . . 13 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) = 𝑦)
29 eqeq2 2633 . . . . . . . . . . . . . . . 16 (𝑦 = ( 1 · 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3029eqcoms 2630 . . . . . . . . . . . . . . 15 (( 1 · 𝑦) = 𝑦 → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3130adantl 482 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
32 ringgrp 18552 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
34333ad2ant1 1082 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
3534adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Grp)
3619sseld 3602 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅))))
38373imp 1256 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 ∈ (Base‘𝑅))
3938adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝐼 ∈ (Base‘𝑅))
4017, 25ringcl 18561 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4116, 39, 24, 40syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4217, 26ringidcl 18568 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → 1 ∈ (Base‘𝑅))
44433ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 1 ∈ (Base‘𝑅))
4544adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 1 ∈ (Base‘𝑅))
4617, 25ringcl 18561 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) ∈ (Base‘𝑅))
4716, 45, 24, 46syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) ∈ (Base‘𝑅))
48 eqid 2622 . . . . . . . . . . . . . . . . . 18 (-g𝑅) = (-g𝑅)
4917, 6, 48grpsubeq0 17501 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ (𝐼 · 𝑦) ∈ (Base‘𝑅) ∧ ( 1 · 𝑦) ∈ (Base‘𝑅)) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5035, 41, 47, 49syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5117, 25, 48, 16, 39, 45, 24rngsubdir 18600 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) · 𝑦) = ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)))
5251eqeq1d 2624 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ))
53 simpl1 1064 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Domn)
5434, 38, 443jca 1242 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5554adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5617, 48grpsubcl 17495 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5817, 25, 6domneq0 19297 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
5953, 57, 24, 58syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
6017, 6, 48grpsubeq0 17501 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6261biimpd 219 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
63 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (𝑦0𝐼 = 1 ))
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑦0 → (𝑦 = 0𝐼 = 1 ))
6564adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑈𝑦0 ) → (𝑦 = 0𝐼 = 1 ))
6665adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑦 = 0𝐼 = 1 ))
6762, 66jaod 395 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 ) → 𝐼 = 1 ))
6859, 67sylbid 230 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0𝐼 = 1 ))
6952, 68sylbird 250 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0𝐼 = 1 ))
7050, 69sylbird 250 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7170adantr 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7231, 71sylbid 230 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7328, 72mpdan 702 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7473ex 450 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ((𝑦𝑈𝑦0 ) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 )))
7574com13 88 . . . . . . . . . 10 ((𝐼 · 𝑦) = 𝑦 → ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))
7675expd 452 . . . . . . . . 9 ((𝐼 · 𝑦) = 𝑦 → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7776adantr 481 . . . . . . . 8 (((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7815, 77syl 17 . . . . . . 7 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7978ex 450 . . . . . 6 (𝑦𝑈 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))))
8079pm2.43b 55 . . . . 5 (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
8180com14 96 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈 → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))))
8281imp 445 . . 3 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ 𝑦𝑈) → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
8382rexlimdva 3031 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∃𝑦𝑈 𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
848, 83mpd 15 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  {csn 4177  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  1rcur 18501  Ringcrg 18547  LIdealclidl 19170  Domncdomn 19280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-nzr 19258  df-domn 19284
This theorem is referenced by:  uzlidlring  41929
  Copyright terms: Public domain W3C validator