Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   Unicode version

Theorem lidldomn1 41921
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l  |-  L  =  (LIdeal `  R )
lidldomn1.t  |-  .x.  =  ( .r `  R )
lidldomn1.1  |-  .1.  =  ( 1r `  R )
lidldomn1.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
lidldomn1  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  ( A. x  e.  U  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  ->  I  =  .1.  ) )
Distinct variable groups:    x, I    x, U    x,  .x.
Allowed substitution hints:    R( x)    .1. ( x)    L( x)    .0. ( x)

Proof of Theorem lidldomn1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 domnring 19296 . . . 4  |-  ( R  e. Domn  ->  R  e.  Ring )
213ad2ant1 1082 . . 3  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  R  e.  Ring )
3 simp2l 1087 . . 3  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  U  e.  L )
4 simp2r 1088 . . 3  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  U  =/=  {  .0.  } )
5 lidldomn1.l . . . 4  |-  L  =  (LIdeal `  R )
6 lidldomn1.0 . . . 4  |-  .0.  =  ( 0g `  R )
75, 6lidlnz 19228 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  L  /\  U  =/= 
{  .0.  } )  ->  E. y  e.  U  y  =/=  .0.  )
82, 3, 4, 7syl3anc 1326 . 2  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  E. y  e.  U  y  =/=  .0.  )
9 oveq2 6658 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
I  .x.  x )  =  ( I  .x.  y ) )
10 id 22 . . . . . . . . . . 11  |-  ( x  =  y  ->  x  =  y )
119, 10eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( I  .x.  x
)  =  x  <->  ( I  .x.  y )  =  y ) )
12 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .x.  I )  =  ( y  .x.  I ) )
1312, 10eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x  .x.  I
)  =  x  <->  ( y  .x.  I )  =  y ) )
1411, 13anbi12d 747 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  <->  ( ( I 
.x.  y )  =  y  /\  ( y 
.x.  I )  =  y ) ) )
1514rspcva 3307 . . . . . . . 8  |-  ( ( y  e.  U  /\  A. x  e.  U  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  ->  ( ( I 
.x.  y )  =  y  /\  ( y 
.x.  I )  =  y ) )
162adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  R  e.  Ring )
17 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  R )  =  (
Base `  R )
1817, 5lidlss 19210 . . . . . . . . . . . . . . . . . . . 20  |-  ( U  e.  L  ->  U  C_  ( Base `  R
) )
1918adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  L  /\  U  =/=  {  .0.  }
)  ->  U  C_  ( Base `  R ) )
20193ad2ant2 1083 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  U  C_  ( Base `  R
) )
2120sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  (
y  e.  U  -> 
y  e.  ( Base `  R ) ) )
2221com12 32 . . . . . . . . . . . . . . . 16  |-  ( y  e.  U  ->  (
( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  ->  y  e.  ( Base `  R
) ) )
2322adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  U  /\  y  =/=  .0.  )  -> 
( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  ->  y  e.  ( Base `  R
) ) )
2423impcom 446 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  y  e.  (
Base `  R )
)
25 lidldomn1.t . . . . . . . . . . . . . . 15  |-  .x.  =  ( .r `  R )
26 lidldomn1.1 . . . . . . . . . . . . . . 15  |-  .1.  =  ( 1r `  R )
2717, 25, 26ringlidm 18571 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (  .1.  .x.  y )  =  y )
2816, 24, 27syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  (  .1.  .x.  y )  =  y )
29 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( y  =  (  .1.  .x.  y )  ->  (
( I  .x.  y
)  =  y  <->  ( I  .x.  y )  =  (  .1.  .x.  y )
) )
3029eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( (  .1.  .x.  y )  =  y  ->  ( ( I  .x.  y )  =  y  <->  ( I  .x.  y )  =  (  .1.  .x.  y )
) )
3130adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  /\  (  .1.  .x.  y )  =  y )  ->  ( (
I  .x.  y )  =  y  <->  ( I  .x.  y )  =  (  .1.  .x.  y )
) )
32 ringgrp 18552 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  Ring  ->  R  e. 
Grp )
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. Domn  ->  R  e.  Grp )
34333ad2ant1 1082 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  R  e.  Grp )
3534adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  R  e.  Grp )
3619sseld 3602 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  L  /\  U  =/=  {  .0.  }
)  ->  ( I  e.  U  ->  I  e.  ( Base `  R
) ) )
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e. Domn  ->  ( ( U  e.  L  /\  U  =/=  {  .0.  } )  ->  ( I  e.  U  ->  I  e.  ( Base `  R )
) ) )
38373imp 1256 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  I  e.  ( Base `  R
) )
3938adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  I  e.  (
Base `  R )
)
4017, 25ringcl 18561 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Ring  /\  I  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( I  .x.  y )  e.  (
Base `  R )
)
4116, 39, 24, 40syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( I  .x.  y )  e.  (
Base `  R )
)
4217, 26ringidcl 18568 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e. Domn  ->  .1.  e.  ( Base `  R ) )
44433ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  .1.  e.  ( Base `  R
) )
4544adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  .1.  e.  ( Base `  R ) )
4617, 25ringcl 18561 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Ring  /\  .1.  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  (  .1.  .x.  y )  e.  (
Base `  R )
)
4716, 45, 24, 46syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  (  .1.  .x.  y )  e.  (
Base `  R )
)
48 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( -g `  R )  =  (
-g `  R )
4917, 6, 48grpsubeq0 17501 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Grp  /\  ( I  .x.  y )  e.  ( Base `  R
)  /\  (  .1.  .x.  y )  e.  (
Base `  R )
)  ->  ( (
( I  .x.  y
) ( -g `  R
) (  .1.  .x.  y ) )  =  .0.  <->  ( I  .x.  y )  =  (  .1.  .x.  y )
) )
5035, 41, 47, 49syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I  .x.  y ) ( -g `  R
) (  .1.  .x.  y ) )  =  .0.  <->  ( I  .x.  y )  =  (  .1.  .x.  y )
) )
5117, 25, 48, 16, 39, 45, 24rngsubdir 18600 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( I ( -g `  R
)  .1.  )  .x.  y )  =  ( ( I  .x.  y
) ( -g `  R
) (  .1.  .x.  y ) ) )
5251eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I ( -g `  R
)  .1.  )  .x.  y )  =  .0.  <->  ( ( I  .x.  y
) ( -g `  R
) (  .1.  .x.  y ) )  =  .0.  ) )
53 simpl1 1064 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  R  e. Domn )
5434, 38, 443jca 1242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  ( R  e.  Grp  /\  I  e.  ( Base `  R
)  /\  .1.  e.  ( Base `  R )
) )
5554adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( R  e. 
Grp  /\  I  e.  ( Base `  R )  /\  .1.  e.  ( Base `  R ) ) )
5617, 48grpsubcl 17495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Grp  /\  I  e.  ( Base `  R )  /\  .1.  e.  ( Base `  R
) )  ->  (
I ( -g `  R
)  .1.  )  e.  ( Base `  R
) )
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( I (
-g `  R )  .1.  )  e.  ( Base `  R ) )
5817, 25, 6domneq0 19297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. Domn  /\  (
I ( -g `  R
)  .1.  )  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( (
( I ( -g `  R )  .1.  )  .x.  y )  =  .0.  <->  ( ( I ( -g `  R )  .1.  )  =  .0.  \/  y  =  .0.  ) ) )
5953, 57, 24, 58syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I ( -g `  R
)  .1.  )  .x.  y )  =  .0.  <->  ( ( I ( -g `  R )  .1.  )  =  .0.  \/  y  =  .0.  ) ) )
6017, 6, 48grpsubeq0 17501 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Grp  /\  I  e.  ( Base `  R )  /\  .1.  e.  ( Base `  R
) )  ->  (
( I ( -g `  R )  .1.  )  =  .0.  <->  I  =  .1.  ) )
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( I ( -g `  R
)  .1.  )  =  .0.  <->  I  =  .1.  ) )
6261biimpd 219 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( I ( -g `  R
)  .1.  )  =  .0.  ->  I  =  .1.  ) )
63 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  .0.  ->  (
y  =/=  .0.  ->  I  =  .1.  ) )
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =/=  .0.  ->  (
y  =  .0.  ->  I  =  .1.  ) )
6564adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  U  /\  y  =/=  .0.  )  -> 
( y  =  .0. 
->  I  =  .1.  ) )
6665adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( y  =  .0.  ->  I  =  .1.  ) )
6762, 66jaod 395 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I ( -g `  R
)  .1.  )  =  .0.  \/  y  =  .0.  )  ->  I  =  .1.  ) )
6859, 67sylbid 230 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I ( -g `  R
)  .1.  )  .x.  y )  =  .0. 
->  I  =  .1.  ) )
6952, 68sylbird 250 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( ( I  .x.  y ) ( -g `  R
) (  .1.  .x.  y ) )  =  .0.  ->  I  =  .1.  ) )
7050, 69sylbird 250 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( I 
.x.  y )  =  (  .1.  .x.  y
)  ->  I  =  .1.  ) )
7170adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  /\  (  .1.  .x.  y )  =  y )  ->  ( (
I  .x.  y )  =  (  .1.  .x.  y
)  ->  I  =  .1.  ) )
7231, 71sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  /\  (  .1.  .x.  y )  =  y )  ->  ( (
I  .x.  y )  =  y  ->  I  =  .1.  ) )
7328, 72mpdan 702 . . . . . . . . . . . 12  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  (
y  e.  U  /\  y  =/=  .0.  ) )  ->  ( ( I 
.x.  y )  =  y  ->  I  =  .1.  ) )
7473ex 450 . . . . . . . . . . 11  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  (
( y  e.  U  /\  y  =/=  .0.  )  ->  ( ( I 
.x.  y )  =  y  ->  I  =  .1.  ) ) )
7574com13 88 . . . . . . . . . 10  |-  ( ( I  .x.  y )  =  y  ->  (
( y  e.  U  /\  y  =/=  .0.  )  ->  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/= 
{  .0.  } )  /\  I  e.  U
)  ->  I  =  .1.  ) ) )
7675expd 452 . . . . . . . . 9  |-  ( ( I  .x.  y )  =  y  ->  (
y  e.  U  -> 
( y  =/=  .0.  ->  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  ->  I  =  .1.  ) ) ) )
7776adantr 481 . . . . . . . 8  |-  ( ( ( I  .x.  y
)  =  y  /\  ( y  .x.  I
)  =  y )  ->  ( y  e.  U  ->  ( y  =/=  .0.  ->  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U
)  ->  I  =  .1.  ) ) ) )
7815, 77syl 17 . . . . . . 7  |-  ( ( y  e.  U  /\  A. x  e.  U  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  ->  ( y  e.  U  ->  ( y  =/=  .0.  ->  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U
)  ->  I  =  .1.  ) ) ) )
7978ex 450 . . . . . 6  |-  ( y  e.  U  ->  ( A. x  e.  U  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  ->  ( y  e.  U  ->  ( y  =/=  .0.  ->  (
( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  ->  I  =  .1.  ) ) ) ) )
8079pm2.43b 55 . . . . 5  |-  ( A. x  e.  U  (
( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x )  -> 
( y  e.  U  ->  ( y  =/=  .0.  ->  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  ->  I  =  .1.  ) ) ) )
8180com14 96 . . . 4  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  (
y  e.  U  -> 
( y  =/=  .0.  ->  ( A. x  e.  U  ( ( I 
.x.  x )  =  x  /\  ( x 
.x.  I )  =  x )  ->  I  =  .1.  ) ) ) )
8281imp 445 . . 3  |-  ( ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  } )  /\  I  e.  U )  /\  y  e.  U )  ->  (
y  =/=  .0.  ->  ( A. x  e.  U  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  ->  I  =  .1.  ) ) )
8382rexlimdva 3031 . 2  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  ( E. y  e.  U  y  =/=  .0.  ->  ( A. x  e.  U  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  ->  I  =  .1.  ) ) )
848, 83mpd 15 1  |-  ( ( R  e. Domn  /\  ( U  e.  L  /\  U  =/=  {  .0.  }
)  /\  I  e.  U )  ->  ( A. x  e.  U  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I )  =  x )  ->  I  =  .1.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   1rcur 18501   Ringcrg 18547  LIdealclidl 19170  Domncdomn 19280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-nzr 19258  df-domn 19284
This theorem is referenced by:  uzlidlring  41929
  Copyright terms: Public domain W3C validator