Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   Unicode version

Theorem liminfltlem 40036
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m  |-  ( ph  ->  M  e.  ZZ )
liminfltlem.z  |-  Z  =  ( ZZ>= `  M )
liminfltlem.f  |-  ( ph  ->  F : Z --> RR )
liminfltlem.r  |-  ( ph  ->  (liminf `  F )  e.  RR )
liminfltlem.x  |-  ( ph  ->  X  e.  RR+ )
Assertion
Ref Expression
liminfltlem  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (liminf `  F )  <  (
( F `  k
)  +  X ) )
Distinct variable groups:    j, F, k    k, M    j, X, k    j, Z, k    ph, j,
k
Allowed substitution hint:    M( j)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 4747 . . 3  |-  F/_ k
( k  e.  Z  |-> 
-u ( F `  k ) )
2 liminfltlem.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 liminfltlem.z . . 3  |-  Z  =  ( ZZ>= `  M )
4 liminfltlem.f . . . . . 6  |-  ( ph  ->  F : Z --> RR )
54ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
65renegcld 10457 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  -u ( F `  k )  e.  RR )
76fmptd2 39460 . . 3  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) ) : Z --> RR )
83fvexi 6202 . . . . . . 7  |-  Z  e. 
_V
98mptex 6486 . . . . . 6  |-  ( k  e.  Z  |->  -u ( F `  k )
)  e.  _V
109limsupcli 39989 . . . . 5  |-  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  e.  RR*
1110a1i 11 . . . 4  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  e.  RR* )
12 nfv 1843 . . . . . 6  |-  F/ k
ph
13 nfcv 2764 . . . . . 6  |-  F/_ k F
1412, 13, 2, 3, 4liminfvaluz4 40031 . . . . 5  |-  ( ph  ->  (liminf `  F )  =  -e ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) ) )
15 liminfltlem.r . . . . 5  |-  ( ph  ->  (liminf `  F )  e.  RR )
1614, 15eqeltrrd 2702 . . . 4  |-  ( ph  -> 
-e ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  e.  RR )
1711, 16xnegrecl2d 39697 . . 3  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  e.  RR )
18 liminfltlem.x . . 3  |-  ( ph  ->  X  e.  RR+ )
191, 2, 3, 7, 17, 18limsupgt 40010 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  -  X
)  <  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) ) )
20 simpll 790 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
213uztrn2 11705 . . . . . 6  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
2221adantll 750 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
23 negex 10279 . . . . . . . . . . 11  |-  -u ( F `  k )  e.  _V
24 fvmpt4 39446 . . . . . . . . . . 11  |-  ( ( k  e.  Z  /\  -u ( F `  k
)  e.  _V )  ->  ( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  =  -u ( F `  k ) )
2523, 24mpan2 707 . . . . . . . . . 10  |-  ( k  e.  Z  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  -u ( F `  k ) )
2625adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  -u ( F `  k ) )
2726oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  -  X
)  =  ( -u ( F `  k )  -  X ) )
285recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2918rpred 11872 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  RR )
3029adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  X  e.  RR )
3130recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  X  e.  CC )
3228, 31negdi2d 10406 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  -u (
( F `  k
)  +  X )  =  ( -u ( F `  k )  -  X ) )
3327, 32eqtr4d 2659 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  -  X
)  =  -u (
( F `  k
)  +  X ) )
3417recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  e.  CC )
3517rexnegd 39334 . . . . . . . . . . 11  |-  ( ph  -> 
-e ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  =  -u ( limsup `  (
k  e.  Z  |->  -u ( F `  k ) ) ) )
3614, 35eqtr2d 2657 . . . . . . . . . 10  |-  ( ph  -> 
-u ( limsup `  (
k  e.  Z  |->  -u ( F `  k ) ) )  =  (liminf `  F ) )
3734, 36negcon1ad 10387 . . . . . . . . 9  |-  ( ph  -> 
-u (liminf `  F )  =  ( limsup `  (
k  e.  Z  |->  -u ( F `  k ) ) ) )
3837eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  =  -u (liminf `  F ) )
3938adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( limsup `
 ( k  e.  Z  |->  -u ( F `  k ) ) )  =  -u (liminf `  F
) )
4033, 39breq12d 4666 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ( k  e.  Z  |->  -u ( F `  k )
) `  k )  -  X )  <  ( limsup `
 ( k  e.  Z  |->  -u ( F `  k ) ) )  <->  -u ( ( F `  k )  +  X
)  <  -u (liminf `  F ) ) )
4115adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (liminf `  F )  e.  RR )
425, 30readdcld 10069 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  X )  e.  RR )
4341, 42ltnegd 10605 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
(liminf `  F )  <  ( ( F `  k )  +  X
)  <->  -u ( ( F `
 k )  +  X )  <  -u (liminf `  F ) ) )
4440, 43bitr4d 271 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ( k  e.  Z  |->  -u ( F `  k )
) `  k )  -  X )  <  ( limsup `
 ( k  e.  Z  |->  -u ( F `  k ) ) )  <-> 
(liminf `  F )  <  ( ( F `  k )  +  X
) ) )
4520, 22, 44syl2anc 693 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  -  X
)  <  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  <-> 
(liminf `  F )  <  ( ( F `  k )  +  X
) ) )
4645ralbidva 2985 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( k  e.  Z  |->  -u ( F `  k ) ) `  k )  -  X
)  <  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  <->  A. k  e.  ( ZZ>=
`  j ) (liminf `  F )  <  (
( F `  k
)  +  X ) ) )
4746rexbidva 3049 . 2  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( ( k  e.  Z  |->  -u ( F `  k )
) `  k )  -  X )  <  ( limsup `
 ( k  e.  Z  |->  -u ( F `  k ) ) )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (liminf `  F )  <  (
( F `  k
)  +  X ) ) )
4819, 47mpbid 222 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (liminf `  F )  <  (
( F `  k
)  +  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939   RR*cxr 10073    < clt 10074    - cmin 10266   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    -ecxne 11943   limsupclsp 14201  liminfclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-ceil 12594  df-limsup 14202  df-liminf 39984
This theorem is referenced by:  liminflt  40037
  Copyright terms: Public domain W3C validator