MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfmm Structured version   Visualization version   GIF version

Theorem lindfmm 20166
Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindfmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))

Proof of Theorem lindfmm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20147 . . . . 5 Rel LIndF
21brrelexi 5158 . . . 4 (𝐹 LIndF 𝑆𝐹 ∈ V)
3 simp3 1063 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
4 dmfex 7124 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐼𝐵) → 𝐼 ∈ V)
52, 3, 4syl2anr 495 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V)
65ex 450 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆𝐼 ∈ V))
71brrelexi 5158 . . . 4 ((𝐺𝐹) LIndF 𝑇 → (𝐺𝐹) ∈ V)
8 f1f 6101 . . . . . 6 (𝐺:𝐵1-1𝐶𝐺:𝐵𝐶)
9 fco 6058 . . . . . 6 ((𝐺:𝐵𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
108, 9sylan 488 . . . . 5 ((𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
11103adant1 1079 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
12 dmfex 7124 . . . 4 (((𝐺𝐹) ∈ V ∧ (𝐺𝐹):𝐼𝐶) → 𝐼 ∈ V)
137, 11, 12syl2anr 495 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → 𝐼 ∈ V)
1413ex 450 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → ((𝐺𝐹) LIndF 𝑇𝐼 ∈ V))
15 eldifi 3732 . . . . . . . . 9 (𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
16 simpllr 799 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵1-1𝐶)
17 lmhmlmod1 19033 . . . . . . . . . . . . . . 15 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1817ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod)
19 simprr 796 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
20 simprl 794 . . . . . . . . . . . . . . 15 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹:𝐼𝐵)
21 simpl 473 . . . . . . . . . . . . . . 15 ((𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥𝐼)
22 ffvelrn 6357 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝑥𝐼) → (𝐹𝑥) ∈ 𝐵)
2320, 21, 22syl2an 494 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹𝑥) ∈ 𝐵)
24 lindfmm.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
25 eqid 2622 . . . . . . . . . . . . . . 15 (Scalar‘𝑆) = (Scalar‘𝑆)
26 eqid 2622 . . . . . . . . . . . . . . 15 ( ·𝑠𝑆) = ( ·𝑠𝑆)
27 eqid 2622 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2824, 25, 26, 27lmodvscl 18880 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
2918, 19, 23, 28syl3anc 1326 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
30 imassrn 5477 . . . . . . . . . . . . . . . 16 (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹
31 frn 6053 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵 → ran 𝐹𝐵)
3231adantr 481 . . . . . . . . . . . . . . . 16 ((𝐹:𝐼𝐵𝐼 ∈ V) → ran 𝐹𝐵)
3330, 32syl5ss 3614 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
3433ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
35 eqid 2622 . . . . . . . . . . . . . . 15 (LSpan‘𝑆) = (LSpan‘𝑆)
3624, 35lspssv 18983 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
3718, 34, 36syl2anc 693 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
38 f1elima 6520 . . . . . . . . . . . . 13 ((𝐺:𝐵1-1𝐶 ∧ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
3916, 29, 37, 38syl3anc 1326 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
40 simplll 798 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
41 eqid 2622 . . . . . . . . . . . . . . . 16 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4225, 27, 24, 26, 41lmhmlin 19035 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4340, 19, 23, 42syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
44 ffn 6045 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
4544ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹 Fn 𝐼)
46 fvco2 6273 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐼𝑥𝐼) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4745, 21, 46syl2an 494 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4847oveq2d 6666 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4943, 48eqtr4d 2659 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)))
50 eqid 2622 . . . . . . . . . . . . . . . 16 (LSpan‘𝑇) = (LSpan‘𝑇)
5124, 35, 50lmhmlsp 19049 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
5240, 34, 51syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
53 imaco 5640 . . . . . . . . . . . . . . 15 ((𝐺𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))
5453fveq2i 6194 . . . . . . . . . . . . . 14 ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))
5552, 54syl6eqr 2674 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))))
5649, 55eleq12d 2695 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5739, 56bitr3d 270 . . . . . . . . . . 11 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5857notbid 308 . . . . . . . . . 10 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5958anassrs 680 . . . . . . . . 9 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6015, 59sylan2 491 . . . . . . . 8 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6160ralbidva 2985 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
62 eqid 2622 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
6325, 62lmhmsca 19030 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
6463fveq2d 6195 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
6563fveq2d 6195 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑆)))
6665sneqd 4189 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → {(0g‘(Scalar‘𝑇))} = {(0g‘(Scalar‘𝑆))})
6764, 66difeq12d 3729 . . . . . . . . 9 (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6867ad3antrrr 766 . . . . . . . 8 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6968raleqdv 3144 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7061, 69bitr4d 271 . . . . . 6 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7170ralbidva 2985 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7217ad2antrr 762 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑆 ∈ LMod)
73 simprr 796 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐼 ∈ V)
74 eqid 2622 . . . . . . 7 (0g‘(Scalar‘𝑆)) = (0g‘(Scalar‘𝑆))
7524, 26, 35, 25, 27, 74islindf2 20153 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
7672, 73, 20, 75syl3anc 1326 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
77 lmhmlmod2 19032 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7877ad2antrr 762 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑇 ∈ LMod)
7910ad2ant2lr 784 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐺𝐹):𝐼𝐶)
80 lindfmm.c . . . . . . 7 𝐶 = (Base‘𝑇)
81 eqid 2622 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
82 eqid 2622 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
8380, 41, 50, 62, 81, 82islindf2 20153 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺𝐹):𝐼𝐶) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8478, 73, 79, 83syl3anc 1326 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8571, 76, 843bitr4d 300 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
8685exp32 631 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) → (𝐹:𝐼𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))))
87863impia 1261 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇)))
886, 14, 87pm5.21ndd 369 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  ran crn 5115  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LModclmod 18863  LSpanclspn 18971   LMHom clmhm 19019   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lindf 20145
This theorem is referenced by:  lindsmm  20167
  Copyright terms: Public domain W3C validator