Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   GIF version

Theorem lmhmfgima 37654
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y 𝑌 = (𝑇s (𝐹𝐴))
lmhmfgima.x 𝑋 = (𝑆s 𝐴)
lmhmfgima.u 𝑈 = (LSubSp‘𝑆)
lmhmfgima.xf (𝜑𝑋 ∈ LFinGen)
lmhmfgima.a (𝜑𝐴𝑈)
lmhmfgima.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmfgima (𝜑𝑌 ∈ LFinGen)

Proof of Theorem lmhmfgima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2 𝑌 = (𝑇s (𝐹𝐴))
2 lmhmfgima.xf . . . 4 (𝜑𝑋 ∈ LFinGen)
3 lmhmfgima.f . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
4 lmhmlmod1 19033 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑆 ∈ LMod)
6 lmhmfgima.a . . . . 5 (𝜑𝐴𝑈)
7 lmhmfgima.x . . . . . 6 𝑋 = (𝑆s 𝐴)
8 lmhmfgima.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
9 eqid 2622 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
10 eqid 2622 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
117, 8, 9, 10islssfg2 37641 . . . . 5 ((𝑆 ∈ LMod ∧ 𝐴𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
125, 6, 11syl2anc 693 . . . 4 (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
132, 12mpbid 222 . . 3 (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)
14 inss1 3833 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
1514sseli 3599 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ 𝒫 (Base‘𝑆))
1615elpwid 4170 . . . . . . . 8 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ⊆ (Base‘𝑆))
17 eqid 2622 . . . . . . . . 9 (LSpan‘𝑇) = (LSpan‘𝑇)
1810, 9, 17lmhmlsp 19049 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
193, 16, 18syl2an 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
2019oveq2d 6666 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))))
21 lmhmlmod2 19032 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
223, 21syl 17 . . . . . . . 8 (𝜑𝑇 ∈ LMod)
2322adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod)
24 imassrn 5477 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
25 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
2610, 25lmhmf 19034 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
273, 26syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑆)⟶(Base‘𝑇))
28 frn 6053 . . . . . . . . . 10 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
2927, 28syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (Base‘𝑇))
3024, 29syl5ss 3614 . . . . . . . 8 (𝜑 → (𝐹𝑥) ⊆ (Base‘𝑇))
3130adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ⊆ (Base‘𝑇))
32 inss2 3834 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
3332sseli 3599 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ Fin)
3433adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin)
35 ffun 6048 . . . . . . . . . . 11 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Fun 𝐹)
3627, 35syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
3736adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹)
3816adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆))
39 fdm 6051 . . . . . . . . . . . 12 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → dom 𝐹 = (Base‘𝑆))
4027, 39syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝑆))
4140adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆))
4238, 41sseqtr4d 3642 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
43 fores 6124 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
4437, 42, 43syl2anc 693 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
45 fofi 8252 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝐹𝑥):𝑥onto→(𝐹𝑥)) → (𝐹𝑥) ∈ Fin)
4634, 44, 45syl2anc 693 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ∈ Fin)
47 eqid 2622 . . . . . . . 8 (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥)))
4817, 25, 47islssfgi 37642 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑥) ⊆ (Base‘𝑇) ∧ (𝐹𝑥) ∈ Fin) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4923, 31, 46, 48syl3anc 1326 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
5020, 49eqeltrd 2701 . . . . 5 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen)
51 imaeq2 5462 . . . . . . 7 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹𝐴))
5251oveq2d 6666 . . . . . 6 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s (𝐹𝐴)))
5352eleq1d 2686 . . . . 5 (((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇s (𝐹𝐴)) ∈ LFinGen))
5450, 53syl5ibcom 235 . . . 4 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5554rexlimdva 3031 . . 3 (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5613, 55mpd 15 . 2 (𝜑 → (𝑇s (𝐹𝐴)) ∈ LFinGen)
571, 56syl5eqel 2705 1 (𝜑𝑌 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  s cress 15858  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971   LMHom clmhm 19019  LFinGenclfig 37637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lfig 37638
This theorem is referenced by:  lnmepi  37655
  Copyright terms: Public domain W3C validator