| Step | Hyp | Ref
| Expression |
| 1 | | lmod1zr.m |
. . 3
⊢ 𝑀 = ({〈(Base‘ndx),
{𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) |
| 2 | | elsni 4194 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ {〈𝑍, 𝐼〉} → 𝑝 = 〈𝑍, 𝐼〉) |
| 3 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈𝑍, 𝐼〉 → (2nd ‘𝑝) = (2nd
‘〈𝑍, 𝐼〉)) |
| 4 | 3 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑝 = 〈𝑍, 𝐼〉) → (2nd ‘𝑝) = (2nd
‘〈𝑍, 𝐼〉)) |
| 5 | | op2ndg 7181 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → (2nd ‘〈𝑍, 𝐼〉) = 𝐼) |
| 6 | 5 | ancoms 469 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (2nd ‘〈𝑍, 𝐼〉) = 𝐼) |
| 7 | | snidg 4206 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
| 8 | 7 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐼 ∈ {𝐼}) |
| 9 | 6, 8 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (2nd ‘〈𝑍, 𝐼〉) ∈ {𝐼}) |
| 10 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑝 = 〈𝑍, 𝐼〉) → (2nd
‘〈𝑍, 𝐼〉) ∈ {𝐼}) |
| 11 | 4, 10 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑝 = 〈𝑍, 𝐼〉) → (2nd ‘𝑝) ∈ {𝐼}) |
| 12 | 2, 11 | sylan2 491 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑝 ∈ {〈𝑍, 𝐼〉}) → (2nd ‘𝑝) ∈ {𝐼}) |
| 13 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) = (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) |
| 14 | 12, 13 | fmptd 6385 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)):{〈𝑍, 𝐼〉}⟶{𝐼}) |
| 15 | | opex 4932 |
. . . . . . . . . 10
⊢
〈𝑍, 𝐼〉 ∈ V |
| 16 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐼 ∈ 𝑉) |
| 17 | | fsng 6404 |
. . . . . . . . . 10
⊢
((〈𝑍, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ((𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)):{〈𝑍, 𝐼〉}⟶{𝐼} ↔ (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) = {〈〈𝑍, 𝐼〉, 𝐼〉})) |
| 18 | 15, 16, 17 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)):{〈𝑍, 𝐼〉}⟶{𝐼} ↔ (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) = {〈〈𝑍, 𝐼〉, 𝐼〉})) |
| 19 | 14, 18 | mpbid 222 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) = {〈〈𝑍, 𝐼〉, 𝐼〉}) |
| 20 | | xpsng 6406 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → ({𝑍} × {𝐼}) = {〈𝑍, 𝐼〉}) |
| 21 | 20 | ancoms 469 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑍} × {𝐼}) = {〈𝑍, 𝐼〉}) |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑍, 𝐼〉} = ({𝑍} × {𝐼})) |
| 23 | 22 | mpteq1d 4738 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑝 ∈ {〈𝑍, 𝐼〉} ↦ (2nd ‘𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd ‘𝑝))) |
| 24 | 19, 23 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈〈𝑍, 𝐼〉, 𝐼〉} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd ‘𝑝))) |
| 25 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 26 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑖 ∈ V |
| 27 | 25, 26 | op2ndd 7179 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑧, 𝑖〉 → (2nd ‘𝑝) = 𝑖) |
| 28 | 27 | mpt2mpt 6752 |
. . . . . . . 8
⊢ (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd ‘𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) |
| 29 | 28 | a1i 11 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd ‘𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)) |
| 30 | | snex 4908 |
. . . . . . . . 9
⊢ {𝑍} ∈ V |
| 31 | | lmod1zr.r |
. . . . . . . . . 10
⊢ 𝑅 = {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
| 32 | 31 | rngbase 16001 |
. . . . . . . . 9
⊢ ({𝑍} ∈ V → {𝑍} = (Base‘𝑅)) |
| 33 | 30, 32 | mp1i 13 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑍} = (Base‘𝑅)) |
| 34 | | eqidd 2623 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝐼} = {𝐼}) |
| 35 | | mpt2eq12 6715 |
. . . . . . . 8
⊢ (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)) |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)) |
| 37 | 24, 29, 36 | 3eqtrd 2660 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈〈𝑍, 𝐼〉, 𝐼〉} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)) |
| 38 | 37 | opeq2d 4409 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 〈(
·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉 = 〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉) |
| 39 | 38 | sneqd 4189 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈(
·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉} = {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉}) |
| 40 | 39 | uneq2d 3767 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({〈(Base‘ndx), {𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) = ({〈(Base‘ndx),
{𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉})) |
| 41 | 1, 40 | syl5eq 2668 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 = ({〈(Base‘ndx), {𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉})) |
| 42 | 31 | ring1 18602 |
. . 3
⊢ (𝑍 ∈ 𝑊 → 𝑅 ∈ Ring) |
| 43 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑧 = 𝑎 → 𝑖 = 𝑖) |
| 44 | | id 22 |
. . . . . . . 8
⊢ (𝑖 = 𝑏 → 𝑖 = 𝑏) |
| 45 | 43, 44 | cbvmpt2v 6735 |
. . . . . . 7
⊢ (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏) |
| 46 | 45 | opeq2i 4406 |
. . . . . 6
⊢ 〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉 = 〈(
·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)〉 |
| 47 | 46 | sneqi 4188 |
. . . . 5
⊢ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉} = {〈(
·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)〉} |
| 48 | 47 | uneq2i 3764 |
. . . 4
⊢
({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx),
{〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉}) = ({〈(Base‘ndx), {𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)〉}) |
| 49 | 48 | lmod1 42281 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) →
({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx),
{〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉}) ∈ LMod) |
| 50 | 42, 49 | sylan2 491 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({〈(Base‘ndx), {𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)〉}) ∈ LMod) |
| 51 | 41, 50 | eqeltrd 2701 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∈ LMod) |