Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   GIF version

Theorem lmod1zr 42282
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zr ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)

Proof of Theorem lmod1zr
Dummy variables 𝑎 𝑏 𝑖 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
2 elsni 4194 . . . . . . . . . . 11 (𝑝 ∈ {⟨𝑍, 𝐼⟩} → 𝑝 = ⟨𝑍, 𝐼⟩)
3 fveq2 6191 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑍, 𝐼⟩ → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
43adantl 482 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
5 op2ndg 7181 . . . . . . . . . . . . . . 15 ((𝑍𝑊𝐼𝑉) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
65ancoms 469 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
7 snidg 4206 . . . . . . . . . . . . . . 15 (𝐼𝑉𝐼 ∈ {𝐼})
87adantr 481 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → 𝐼 ∈ {𝐼})
96, 8eqeltrd 2701 . . . . . . . . . . . . 13 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
109adantr 481 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
114, 10eqeltrd 2701 . . . . . . . . . . 11 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) ∈ {𝐼})
122, 11sylan2 491 . . . . . . . . . 10 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 ∈ {⟨𝑍, 𝐼⟩}) → (2nd𝑝) ∈ {𝐼})
13 eqid 2622 . . . . . . . . . 10 (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝))
1412, 13fmptd 6385 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼})
15 opex 4932 . . . . . . . . . 10 𝑍, 𝐼⟩ ∈ V
16 simpl 473 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → 𝐼𝑉)
17 fsng 6404 . . . . . . . . . 10 ((⟨𝑍, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1815, 16, 17sylancr 695 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1914, 18mpbid 222 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩})
20 xpsng 6406 . . . . . . . . . . 11 ((𝑍𝑊𝐼𝑉) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2120ancoms 469 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2221eqcomd 2628 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → {⟨𝑍, 𝐼⟩} = ({𝑍} × {𝐼}))
2322mpteq1d 4738 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
2419, 23eqtr3d 2658 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
25 vex 3203 . . . . . . . . . 10 𝑧 ∈ V
26 vex 3203 . . . . . . . . . 10 𝑖 ∈ V
2725, 26op2ndd 7179 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑖⟩ → (2nd𝑝) = 𝑖)
2827mpt2mpt 6752 . . . . . . . 8 (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)
2928a1i 11 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖))
30 snex 4908 . . . . . . . . 9 {𝑍} ∈ V
31 lmod1zr.r . . . . . . . . . 10 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
3231rngbase 16001 . . . . . . . . 9 ({𝑍} ∈ V → {𝑍} = (Base‘𝑅))
3330, 32mp1i 13 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝑍} = (Base‘𝑅))
34 eqidd 2623 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝐼} = {𝐼})
35 mpt2eq12 6715 . . . . . . . 8 (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3633, 34, 35syl2anc 693 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3724, 29, 363eqtrd 2660 . . . . . 6 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3837opeq2d 4409 . . . . 5 ((𝐼𝑉𝑍𝑊) → ⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩ = ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩)
3938sneqd 4189 . . . 4 ((𝐼𝑉𝑍𝑊) → {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩} = {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩})
4039uneq2d 3767 . . 3 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
411, 40syl5eq 2668 . 2 ((𝐼𝑉𝑍𝑊) → 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
4231ring1 18602 . . 3 (𝑍𝑊𝑅 ∈ Ring)
43 eqidd 2623 . . . . . . . 8 (𝑧 = 𝑎𝑖 = 𝑖)
44 id 22 . . . . . . . 8 (𝑖 = 𝑏𝑖 = 𝑏)
4543, 44cbvmpt2v 6735 . . . . . . 7 (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)
4645opeq2i 4406 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩ = ⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩
4746sneqi 4188 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩} = {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩}
4847uneq2i 3764 . . . 4 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩})
4948lmod1 42281 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5042, 49sylan2 491 . 2 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5141, 50eqeltrd 2701 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {csn 4177  {ctp 4181  cop 4183  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  cmpt2 6652  2nd c2nd 7167  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lmodn0  42284  lvecpsslmod  42296
  Copyright terms: Public domain W3C validator