| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem6 | Structured version Visualization version Unicode version | ||
| Description: Lemma for lshpkrex 34405. Show linearlity of |
| Ref | Expression |
|---|---|
| lshpkrlem.v |
|
| lshpkrlem.a |
|
| lshpkrlem.n |
|
| lshpkrlem.p |
|
| lshpkrlem.h |
|
| lshpkrlem.w |
|
| lshpkrlem.u |
|
| lshpkrlem.z |
|
| lshpkrlem.x |
|
| lshpkrlem.e |
|
| lshpkrlem.d |
|
| lshpkrlem.k |
|
| lshpkrlem.t |
|
| lshpkrlem.o |
|
| lshpkrlem.g |
|
| Ref | Expression |
|---|---|
| lshpkrlem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpkrlem.v |
. . 3
| |
| 2 | lshpkrlem.a |
. . 3
| |
| 3 | lshpkrlem.n |
. . 3
| |
| 4 | lshpkrlem.p |
. . 3
| |
| 5 | lshpkrlem.h |
. . 3
| |
| 6 | lshpkrlem.w |
. . . 4
| |
| 7 | 6 | adantr 481 |
. . 3
|
| 8 | lshpkrlem.u |
. . . 4
| |
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | lshpkrlem.z |
. . . 4
| |
| 11 | 10 | adantr 481 |
. . 3
|
| 12 | simpr2 1068 |
. . 3
| |
| 13 | lshpkrlem.e |
. . . 4
| |
| 14 | 13 | adantr 481 |
. . 3
|
| 15 | lshpkrlem.d |
. . 3
| |
| 16 | lshpkrlem.k |
. . 3
| |
| 17 | lshpkrlem.t |
. . 3
| |
| 18 | lshpkrlem.o |
. . 3
| |
| 19 | lshpkrlem.g |
. . 3
| |
| 20 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19 | lshpkrlem3 34399 |
. 2
|
| 21 | simpr3 1069 |
. . 3
| |
| 22 | 1, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19 | lshpkrlem3 34399 |
. 2
|
| 23 | lveclmod 19106 |
. . . . 5
| |
| 24 | 7, 23 | syl 17 |
. . . 4
|
| 25 | simpr1 1067 |
. . . . 5
| |
| 26 | 1, 15, 17, 16 | lmodvscl 18880 |
. . . . 5
|
| 27 | 24, 25, 12, 26 | syl3anc 1326 |
. . . 4
|
| 28 | 1, 2 | lmodvacl 18877 |
. . . 4
|
| 29 | 24, 27, 21, 28 | syl3anc 1326 |
. . 3
|
| 30 | 1, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19 | lshpkrlem3 34399 |
. 2
|
| 31 | 3reeanv 3108 |
. . 3
| |
| 32 | simp1l 1085 |
. . . . . . . 8
| |
| 33 | simp1r1 1157 |
. . . . . . . 8
| |
| 34 | simp1r2 1158 |
. . . . . . . 8
| |
| 35 | simp1r3 1159 |
. . . . . . . 8
| |
| 36 | simp2ll 1128 |
. . . . . . . 8
| |
| 37 | simp2lr 1129 |
. . . . . . . . 9
| |
| 38 | simp2r 1088 |
. . . . . . . . 9
| |
| 39 | 37, 38 | jca 554 |
. . . . . . . 8
|
| 40 | simp31 1097 |
. . . . . . . 8
| |
| 41 | simp32 1098 |
. . . . . . . 8
| |
| 42 | simp33 1099 |
. . . . . . . 8
| |
| 43 | 1, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19 | lshpkrlem5 34401 |
. . . . . . . 8
|
| 44 | 32, 33, 34, 35, 36, 39, 40, 41, 42, 43 | syl333anc 1358 |
. . . . . . 7
|
| 45 | 44 | 3exp 1264 |
. . . . . 6
|
| 46 | 45 | expdimp 453 |
. . . . 5
|
| 47 | 46 | rexlimdv 3030 |
. . . 4
|
| 48 | 47 | rexlimdvva 3038 |
. . 3
|
| 49 | 31, 48 | syl5bir 233 |
. 2
|
| 50 | 20, 22, 30, 49 | mp3and 1427 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lshyp 34264 |
| This theorem is referenced by: lshpkrcl 34403 |
| Copyright terms: Public domain | W3C validator |