Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   Unicode version

Theorem lshpkrlem6 34402
Description: Lemma for lshpkrex 34405. Show linearlity of  G. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v  |-  V  =  ( Base `  W
)
lshpkrlem.a  |-  .+  =  ( +g  `  W )
lshpkrlem.n  |-  N  =  ( LSpan `  W )
lshpkrlem.p  |-  .(+)  =  (
LSSum `  W )
lshpkrlem.h  |-  H  =  (LSHyp `  W )
lshpkrlem.w  |-  ( ph  ->  W  e.  LVec )
lshpkrlem.u  |-  ( ph  ->  U  e.  H )
lshpkrlem.z  |-  ( ph  ->  Z  e.  V )
lshpkrlem.x  |-  ( ph  ->  X  e.  V )
lshpkrlem.e  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
lshpkrlem.d  |-  D  =  (Scalar `  W )
lshpkrlem.k  |-  K  =  ( Base `  D
)
lshpkrlem.t  |-  .x.  =  ( .s `  W )
lshpkrlem.o  |-  .0.  =  ( 0g `  D )
lshpkrlem.g  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
Assertion
Ref Expression
lshpkrlem6  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( G `  (
( l  .x.  u
)  .+  v )
)  =  ( ( l ( .r `  D ) ( G `
 u ) ) ( +g  `  D
) ( G `  v ) ) )
Distinct variable groups:    x, k,
y,  .+    k, K, x    .0. , k    .x. , k, x, y    U, k, x, y    x, V    k, X, x, y   
k, Z, x, y    .+ , l    G, l    K, l    U, l    X, l    Z, l, k, x, y    .x. , l    u, k, v, x, y, l
Allowed substitution hints:    ph( x, y, v, u, k, l)    D( x, y, v, u, k, l)    .+ ( v, u)    .(+) (
x, y, v, u, k, l)    .x. ( v, u)    U( v, u)    G( x, y, v, u, k)    H( x, y, v, u, k, l)    K( y, v, u)    N( x, y, v, u, k, l)    V( y, v, u, k, l)    W( x, y, v, u, k, l)    X( v, u)    .0. ( x, y, v, u, l)    Z( v, u)

Proof of Theorem lshpkrlem6
Dummy variables  z 
s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3  |-  V  =  ( Base `  W
)
2 lshpkrlem.a . . 3  |-  .+  =  ( +g  `  W )
3 lshpkrlem.n . . 3  |-  N  =  ( LSpan `  W )
4 lshpkrlem.p . . 3  |-  .(+)  =  (
LSSum `  W )
5 lshpkrlem.h . . 3  |-  H  =  (LSHyp `  W )
6 lshpkrlem.w . . . 4  |-  ( ph  ->  W  e.  LVec )
76adantr 481 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  W  e.  LVec )
8 lshpkrlem.u . . . 4  |-  ( ph  ->  U  e.  H )
98adantr 481 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  U  e.  H )
10 lshpkrlem.z . . . 4  |-  ( ph  ->  Z  e.  V )
1110adantr 481 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  Z  e.  V )
12 simpr2 1068 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  u  e.  V )
13 lshpkrlem.e . . . 4  |-  ( ph  ->  ( U  .(+)  ( N `
 { Z }
) )  =  V )
1413adantr 481 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( U  .(+)  ( N `
 { Z }
) )  =  V )
15 lshpkrlem.d . . 3  |-  D  =  (Scalar `  W )
16 lshpkrlem.k . . 3  |-  K  =  ( Base `  D
)
17 lshpkrlem.t . . 3  |-  .x.  =  ( .s `  W )
18 lshpkrlem.o . . 3  |-  .0.  =  ( 0g `  D )
19 lshpkrlem.g . . 3  |-  G  =  ( x  e.  V  |->  ( iota_ k  e.  K  E. y  e.  U  x  =  ( y  .+  ( k  .x.  Z
) ) ) )
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. r  e.  U  u  =  ( r  .+  ( ( G `  u )  .x.  Z
) ) )
21 simpr3 1069 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
v  e.  V )
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. s  e.  U  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) ) )
23 lveclmod 19106 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
247, 23syl 17 . . . 4  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  W  e.  LMod )
25 simpr1 1067 . . . . 5  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
l  e.  K )
261, 15, 17, 16lmodvscl 18880 . . . . 5  |-  ( ( W  e.  LMod  /\  l  e.  K  /\  u  e.  V )  ->  (
l  .x.  u )  e.  V )
2724, 25, 12, 26syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( l  .x.  u
)  e.  V )
281, 2lmodvacl 18877 . . . 4  |-  ( ( W  e.  LMod  /\  (
l  .x.  u )  e.  V  /\  v  e.  V )  ->  (
( l  .x.  u
)  .+  v )  e.  V )
2924, 27, 21, 28syl3anc 1326 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( l  .x.  u )  .+  v
)  e.  V )
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 34399 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  ->  E. z  e.  U  ( ( l  .x.  u )  .+  v
)  =  ( z 
.+  ( ( G `
 ( ( l 
.x.  u )  .+  v ) )  .x.  Z ) ) )
31 3reeanv 3108 . . 3  |-  ( E. r  e.  U  E. s  e.  U  E. z  e.  U  (
u  =  ( r 
.+  ( ( G `
 u )  .x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) )  <->  ( E. r  e.  U  u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  E. s  e.  U  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  E. z  e.  U  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )
32 simp1l 1085 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ph )
33 simp1r1 1157 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  l  e.  K
)
34 simp1r2 1158 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  u  e.  V
)
35 simp1r3 1159 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  v  e.  V
)
36 simp2ll 1128 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  r  e.  U
)
37 simp2lr 1129 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  s  e.  U
)
38 simp2r 1088 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  z  e.  U
)
3937, 38jca 554 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( s  e.  U  /\  z  e.  U ) )
40 simp31 1097 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) ) )
41 simp32 1098 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) ) )
42 simp33 1099 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( ( l 
.x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 34401 . . . . . . . 8  |-  ( ( ( ph  /\  l  e.  K  /\  u  e.  V )  /\  (
v  e.  V  /\  r  e.  U  /\  ( s  e.  U  /\  z  e.  U
) )  /\  (
u  =  ( r 
.+  ( ( G `
 u )  .x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) )
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1358 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( (
r  e.  U  /\  s  e.  U )  /\  z  e.  U
)  /\  ( u  =  ( r  .+  ( ( G `  u )  .x.  Z
) )  /\  v  =  ( s  .+  ( ( G `  v )  .x.  Z
) )  /\  (
( l  .x.  u
)  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u )  .+  v
) )  .x.  Z
) ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) )
45443exp 1264 . . . . . 6  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( ( r  e.  U  /\  s  e.  U )  /\  z  e.  U )  ->  (
( u  =  ( r  .+  ( ( G `  u ) 
.x.  Z ) )  /\  v  =  ( s  .+  ( ( G `  v ) 
.x.  Z ) )  /\  ( ( l 
.x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) ) )
4645expdimp 453 . . . . 5  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( r  e.  U  /\  s  e.  U ) )  -> 
( z  e.  U  ->  ( ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) ) )
4746rexlimdv 3030 . . . 4  |-  ( ( ( ph  /\  (
l  e.  K  /\  u  e.  V  /\  v  e.  V )
)  /\  ( r  e.  U  /\  s  e.  U ) )  -> 
( E. z  e.  U  ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
4847rexlimdvva 3038 . . 3  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( E. r  e.  U  E. s  e.  U  E. z  e.  U  ( u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
4931, 48syl5bir 233 . 2  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( ( E. r  e.  U  u  =  ( r  .+  (
( G `  u
)  .x.  Z )
)  /\  E. s  e.  U  v  =  ( s  .+  (
( G `  v
)  .x.  Z )
)  /\  E. z  e.  U  ( (
l  .x.  u )  .+  v )  =  ( z  .+  ( ( G `  ( ( l  .x.  u ) 
.+  v ) ) 
.x.  Z ) ) )  ->  ( G `  ( ( l  .x.  u )  .+  v
) )  =  ( ( l ( .r
`  D ) ( G `  u ) ) ( +g  `  D
) ( G `  v ) ) ) )
5020, 22, 30, 49mp3and 1427 1  |-  ( (
ph  /\  ( l  e.  K  /\  u  e.  V  /\  v  e.  V ) )  -> 
( G `  (
( l  .x.  u
)  .+  v )
)  =  ( ( l ( .r `  D ) ( G `
 u ) ) ( +g  `  D
) ( G `  v ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {csn 4177    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSSumclsm 18049   LModclmod 18863   LSpanclspn 18971   LVecclvec 19102  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264
This theorem is referenced by:  lshpkrcl  34403
  Copyright terms: Public domain W3C validator