MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslindf Structured version   Visualization version   GIF version

Theorem lsslindf 20169
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslindf ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))

Proof of Theorem lsslindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20147 . . . 4 Rel LIndF
21brrelexi 5158 . . 3 (𝐹 LIndF 𝑋𝐹 ∈ V)
32a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 ∈ V))
41brrelexi 5158 . . 3 (𝐹 LIndF 𝑊𝐹 ∈ V)
54a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑊𝐹 ∈ V))
6 simpr 477 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
7 lsslindf.x . . . . . . . . 9 𝑋 = (𝑊s 𝑆)
8 eqid 2622 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
97, 8ressbasss 15932 . . . . . . . 8 (Base‘𝑋) ⊆ (Base‘𝑊)
10 fss 6056 . . . . . . . 8 ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
116, 9, 10sylancl 694 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
12 ffn 6045 . . . . . . . . 9 (𝐹:dom 𝐹⟶(Base‘𝑊) → 𝐹 Fn dom 𝐹)
1312adantl 482 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹 Fn dom 𝐹)
14 simp3 1063 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹𝑆)
15 lsslindf.u . . . . . . . . . . . . 13 𝑈 = (LSubSp‘𝑊)
168, 15lssss 18937 . . . . . . . . . . . 12 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
17163ad2ant2 1083 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
187, 8ressbas2 15931 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
1917, 18syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 = (Base‘𝑋))
2014, 19sseqtrd 3641 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (Base‘𝑋))
2120adantr 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → ran 𝐹 ⊆ (Base‘𝑋))
22 df-f 5892 . . . . . . . 8 (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ (Base‘𝑋)))
2313, 21, 22sylanbrc 698 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
2411, 23impbida 877 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
2524adantr 481 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
26 simpl2 1065 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑆𝑈)
27 eqid 2622 . . . . . . . . . . . 12 (Scalar‘𝑊) = (Scalar‘𝑊)
287, 27resssca 16031 . . . . . . . . . . 11 (𝑆𝑈 → (Scalar‘𝑊) = (Scalar‘𝑋))
2928eqcomd 2628 . . . . . . . . . 10 (𝑆𝑈 → (Scalar‘𝑋) = (Scalar‘𝑊))
3026, 29syl 17 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Scalar‘𝑋) = (Scalar‘𝑊))
3130fveq2d 6195 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3230fveq2d 6195 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
3332sneqd 4189 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → {(0g‘(Scalar‘𝑋))} = {(0g‘(Scalar‘𝑊))})
3431, 33difeq12d 3729 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
35 eqid 2622 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
367, 35ressvsca 16032 . . . . . . . . . . . 12 (𝑆𝑈 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
3736eqcomd 2628 . . . . . . . . . . 11 (𝑆𝑈 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3826, 37syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3938oveqd 6667 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝑘( ·𝑠𝑋)(𝐹𝑥)) = (𝑘( ·𝑠𝑊)(𝐹𝑥)))
40 simpl1 1064 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑊 ∈ LMod)
41 imassrn 5477 . . . . . . . . . . . 12 (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ ran 𝐹
42 simpl3 1066 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ran 𝐹𝑆)
4341, 42syl5ss 3614 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆)
44 eqid 2622 . . . . . . . . . . . 12 (LSpan‘𝑊) = (LSpan‘𝑊)
45 eqid 2622 . . . . . . . . . . . 12 (LSpan‘𝑋) = (LSpan‘𝑋)
467, 44, 45, 15lsslsp 19015 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4740, 26, 43, 46syl3anc 1326 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4847eqcomd 2628 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4939, 48eleq12d 2695 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 308 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5134, 50raleqbidv 3152 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5251ralbidv 2986 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5325, 52anbi12d 747 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
54 ovex 6678 . . . . . . 7 (𝑊s 𝑆) ∈ V
557, 54eqeltri 2697 . . . . . 6 𝑋 ∈ V
5655a1i 11 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑋 ∈ V)
57 eqid 2622 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
58 eqid 2622 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
59 eqid 2622 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
60 eqid 2622 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
61 eqid 2622 . . . . . 6 (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋))
6257, 58, 45, 59, 60, 61islindf 20151 . . . . 5 ((𝑋 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6356, 62sylan 488 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
64 eqid 2622 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
65 eqid 2622 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
668, 35, 44, 27, 64, 65islindf 20151 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
67663ad2antl1 1223 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6853, 63, 673bitr4d 300 . . 3 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
6968ex 450 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 ∈ V → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊)))
703, 5, 69pm5.21ndd 369 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lindf 20145
This theorem is referenced by:  lsslinds  20170
  Copyright terms: Public domain W3C validator