MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modgcd Structured version   Visualization version   GIF version

Theorem modgcd 15253
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem modgcd
StepHypRef Expression
1 zre 11381 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 11842 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modval 12670 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
41, 2, 3syl2an 494 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
5 zcn 11382 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
65adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
7 nncn 11028 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnre 11027 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 nnne0 11053 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11 redivcl 10744 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℝ)
121, 9, 10, 11syl3an 1368 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
13123anidm23 1385 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
1413flcld 12599 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
1514zcnd 11483 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
16 mulneg1 10466 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -((⌊‘(𝑀 / 𝑁)) · 𝑁))
17 mulcom 10022 . . . . . . . . . . . 12 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘(𝑀 / 𝑁)) · 𝑁) = (𝑁 · (⌊‘(𝑀 / 𝑁))))
1817negeqd 10275 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → -((⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
1916, 18eqtrd 2656 . . . . . . . . . 10 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2019ancoms 469 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
21203adant1 1079 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2221oveq2d 6666 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))))
23 mulcl 10020 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ)
24 negsub 10329 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2523, 24sylan2 491 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ)) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
26253impb 1260 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2722, 26eqtrd 2656 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
286, 8, 15, 27syl3anc 1326 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
294, 28eqtr4d 2659 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)))
3029oveq2d 6666 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3114znegcld 11484 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -(⌊‘(𝑀 / 𝑁)) ∈ ℤ)
32 nnz 11399 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3332adantl 482 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
34 simpl 473 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
35 gcdaddm 15246 . . . 4 ((-(⌊‘(𝑀 / 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3631, 33, 34, 35syl3anc 1326 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3730, 36eqtr4d 2659 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd 𝑀))
38 zmodcl 12690 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℕ0)
3938nn0zd 11480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℤ)
40 gcdcom 15235 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀 mod 𝑁) ∈ ℤ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
4133, 39, 40syl2anc 693 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
42 gcdcom 15235 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4333, 34, 42syl2anc 693 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4437, 41, 433eqtr3d 2664 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  cz 11377  +crp 11832  cfl 12591   mod cmo 12668   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  eucalginv  15297  phimullem  15484  eulerthlem1  15486  pockthlem  15609  gcdmodi  15778  proththd  41531
  Copyright terms: Public domain W3C validator