Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbb Structured version   Visualization version   Unicode version

Theorem mogoldbb 41673
Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbb  |-  ( A. n  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  ->  A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
Distinct variable group:    n, p, q, r

Proof of Theorem mogoldbb
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 2941 . 2  |-  F/ n A. n  e.  ( ZZ>=
`  6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )
2 eqeq1 2626 . . . . . . . 8  |-  ( n  =  m  ->  (
n  =  ( ( p  +  q )  +  r )  <->  m  =  ( ( p  +  q )  +  r ) ) )
32rexbidv 3052 . . . . . . 7  |-  ( n  =  m  ->  ( E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  <->  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r ) ) )
432rexbidv 3057 . . . . . 6  |-  ( n  =  m  ->  ( E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  <->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r ) ) )
54cbvralv 3171 . . . . 5  |-  ( A. n  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  <->  A. m  e.  ( ZZ>= `  6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r ) )
6 6nn 11189 . . . . . . . . 9  |-  6  e.  NN
76nnzi 11401 . . . . . . . 8  |-  6  e.  ZZ
87a1i 11 . . . . . . 7  |-  ( ( n  e. Even  /\  2  <  n )  ->  6  e.  ZZ )
9 evenz 41543 . . . . . . . . 9  |-  ( n  e. Even  ->  n  e.  ZZ )
10 2z 11409 . . . . . . . . . 10  |-  2  e.  ZZ
1110a1i 11 . . . . . . . . 9  |-  ( n  e. Even  ->  2  e.  ZZ )
129, 11zaddcld 11486 . . . . . . . 8  |-  ( n  e. Even  ->  ( n  + 
2 )  e.  ZZ )
1312adantr 481 . . . . . . 7  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
n  +  2 )  e.  ZZ )
14 4cn 11098 . . . . . . . . . 10  |-  4  e.  CC
15 2cn 11091 . . . . . . . . . 10  |-  2  e.  CC
16 4p2e6 11162 . . . . . . . . . . 11  |-  ( 4  +  2 )  =  6
1716eqcomi 2631 . . . . . . . . . 10  |-  6  =  ( 4  +  2 )
1814, 15, 17mvrraddi 10298 . . . . . . . . 9  |-  ( 6  -  2 )  =  4
19 2p2e4 11144 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
20 2evenALTV 41603 . . . . . . . . . . 11  |-  2  e. Even
21 evenltle 41626 . . . . . . . . . . 11  |-  ( ( n  e. Even  /\  2  e. Even  /\  2  <  n
)  ->  ( 2  +  2 )  <_  n )
2220, 21mp3an2 1412 . . . . . . . . . 10  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
2  +  2 )  <_  n )
2319, 22syl5eqbrr 4689 . . . . . . . . 9  |-  ( ( n  e. Even  /\  2  <  n )  ->  4  <_  n )
2418, 23syl5eqbr 4688 . . . . . . . 8  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
6  -  2 )  <_  n )
25 6re 11101 . . . . . . . . . . . 12  |-  6  e.  RR
2625a1i 11 . . . . . . . . . . 11  |-  ( n  e. Even  ->  6  e.  RR )
27 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
2827a1i 11 . . . . . . . . . . 11  |-  ( n  e. Even  ->  2  e.  RR )
299zred 11482 . . . . . . . . . . 11  |-  ( n  e. Even  ->  n  e.  RR )
3026, 28, 293jca 1242 . . . . . . . . . 10  |-  ( n  e. Even  ->  ( 6  e.  RR  /\  2  e.  RR  /\  n  e.  RR ) )
3130adantr 481 . . . . . . . . 9  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
6  e.  RR  /\  2  e.  RR  /\  n  e.  RR ) )
32 lesubadd 10500 . . . . . . . . 9  |-  ( ( 6  e.  RR  /\  2  e.  RR  /\  n  e.  RR )  ->  (
( 6  -  2 )  <_  n  <->  6  <_  ( n  +  2 ) ) )
3331, 32syl 17 . . . . . . . 8  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
( 6  -  2 )  <_  n  <->  6  <_  ( n  +  2 ) ) )
3424, 33mpbid 222 . . . . . . 7  |-  ( ( n  e. Even  /\  2  <  n )  ->  6  <_  ( n  +  2 ) )
35 eluz2 11693 . . . . . . 7  |-  ( ( n  +  2 )  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  ( n  +  2 )  e.  ZZ  /\  6  <_ 
( n  +  2 ) ) )
368, 13, 34, 35syl3anbrc 1246 . . . . . 6  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
n  +  2 )  e.  ( ZZ>= `  6
) )
37 eqeq1 2626 . . . . . . . . 9  |-  ( m  =  ( n  + 
2 )  ->  (
m  =  ( ( p  +  q )  +  r )  <->  ( n  +  2 )  =  ( ( p  +  q )  +  r ) ) )
3837rexbidv 3052 . . . . . . . 8  |-  ( m  =  ( n  + 
2 )  ->  ( E. r  e.  Prime  m  =  ( ( p  +  q )  +  r )  <->  E. r  e.  Prime  ( n  + 
2 )  =  ( ( p  +  q )  +  r ) ) )
39382rexbidv 3057 . . . . . . 7  |-  ( m  =  ( n  + 
2 )  ->  ( E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r )  <->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  ( n  + 
2 )  =  ( ( p  +  q )  +  r ) ) )
4039rspcv 3305 . . . . . 6  |-  ( ( n  +  2 )  e.  ( ZZ>= `  6
)  ->  ( A. m  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  (
n  +  2 )  =  ( ( p  +  q )  +  r ) ) )
4136, 40syl 17 . . . . 5  |-  ( ( n  e. Even  /\  2  <  n )  ->  ( A. m  e.  ( ZZ>=
`  6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  m  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  (
n  +  2 )  =  ( ( p  +  q )  +  r ) ) )
425, 41syl5bi 232 . . . 4  |-  ( ( n  e. Even  /\  2  <  n )  ->  ( A. n  e.  ( ZZ>=
`  6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  (
n  +  2 )  =  ( ( p  +  q )  +  r ) ) )
43 nfv 1843 . . . . 5  |-  F/ p
( n  e. Even  /\  2  <  n )
44 nfre1 3005 . . . . 5  |-  F/ p E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )
45 nfv 1843 . . . . . . 7  |-  F/ q ( ( n  e. Even  /\  2  <  n )  /\  p  e.  Prime )
46 nfcv 2764 . . . . . . . 8  |-  F/_ q Prime
47 nfre1 3005 . . . . . . . 8  |-  F/ q E. q  e.  Prime  n  =  ( p  +  q )
4846, 47nfrex 3007 . . . . . . 7  |-  F/ q E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )
49 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e. 
Prime  /\  q  e.  Prime ) )  /\  r  e. 
Prime )  ->  p  e. 
Prime )
50 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e. 
Prime  /\  q  e.  Prime ) )  /\  r  e. 
Prime )  ->  q  e. 
Prime )
51 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e. 
Prime  /\  q  e.  Prime ) )  /\  r  e. 
Prime )  ->  r  e. 
Prime )
5249, 50, 513jca 1242 . . . . . . . . . . . 12  |-  ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e. 
Prime  /\  q  e.  Prime ) )  /\  r  e. 
Prime )  ->  ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime ) )
5352adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime ) )  /\  r  e.  Prime )  /\  ( n  +  2
)  =  ( ( p  +  q )  +  r ) )  ->  ( p  e. 
Prime  /\  q  e.  Prime  /\  r  e.  Prime )
)
54 simp-4l 806 . . . . . . . . . . 11  |-  ( ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime ) )  /\  r  e.  Prime )  /\  ( n  +  2
)  =  ( ( p  +  q )  +  r ) )  ->  n  e. Even  )
55 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime ) )  /\  r  e.  Prime )  /\  ( n  +  2
)  =  ( ( p  +  q )  +  r ) )  ->  ( n  + 
2 )  =  ( ( p  +  q )  +  r ) )
56 mogoldbblem 41629 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime )  /\  n  e. Even  /\  ( n  + 
2 )  =  ( ( p  +  q )  +  r ) )  ->  E. y  e.  Prime  E. x  e.  Prime  n  =  ( y  +  x ) )
57 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( p  =  y  ->  (
p  +  q )  =  ( y  +  q ) )
5857eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( p  =  y  ->  (
n  =  ( p  +  q )  <->  n  =  ( y  +  q ) ) )
59 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
y  +  q )  =  ( y  +  x ) )
6059eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
n  =  ( y  +  q )  <->  n  =  ( y  +  x
) ) )
6158, 60cbvrex2v 3180 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )  <->  E. y  e.  Prime  E. x  e.  Prime  n  =  ( y  +  x ) )
6256, 61sylibr 224 . . . . . . . . . . 11  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime )  /\  n  e. Even  /\  ( n  + 
2 )  =  ( ( p  +  q )  +  r ) )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )
6353, 54, 55, 62syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime ) )  /\  r  e.  Prime )  /\  ( n  +  2
)  =  ( ( p  +  q )  +  r ) )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )
6463exp31 630 . . . . . . . . 9  |-  ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime )
)  ->  ( r  e.  Prime  ->  ( (
n  +  2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
6564rexlimdv 3030 . . . . . . . 8  |-  ( ( ( n  e. Even  /\  2  <  n )  /\  ( p  e.  Prime  /\  q  e.  Prime )
)  ->  ( E. r  e.  Prime  ( n  +  2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
6665expr 643 . . . . . . 7  |-  ( ( ( n  e. Even  /\  2  <  n )  /\  p  e.  Prime )  -> 
( q  e.  Prime  -> 
( E. r  e. 
Prime  ( n  +  2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
6745, 48, 66rexlimd 3026 . . . . . 6  |-  ( ( ( n  e. Even  /\  2  <  n )  /\  p  e.  Prime )  -> 
( E. q  e. 
Prime  E. r  e.  Prime  ( n  +  2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
6867ex 450 . . . . 5  |-  ( ( n  e. Even  /\  2  <  n )  ->  (
p  e.  Prime  ->  ( E. q  e.  Prime  E. r  e.  Prime  (
n  +  2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
6943, 44, 68rexlimd 3026 . . . 4  |-  ( ( n  e. Even  /\  2  <  n )  ->  ( E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  ( n  + 
2 )  =  ( ( p  +  q )  +  r )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
7042, 69syldc 48 . . 3  |-  ( A. n  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  ->  (
( n  e. Even  /\  2  <  n )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
7170expd 452 . 2  |-  ( A. n  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  ->  (
n  e. Even  ->  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
721, 71ralrimi 2957 1  |-  ( A. n  e.  ( ZZ>= ` 
6 ) E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  n  =  ( ( p  +  q )  +  r )  ->  A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   4c4 11072   6c6 11074   ZZcz 11377   ZZ>=cuz 11687   Primecprime 15385   Even ceven 41537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540
This theorem is referenced by:  sbgoldbmb  41674
  Copyright terms: Public domain W3C validator