MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monoord2 Structured version   Visualization version   GIF version

Theorem monoord2 12832
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord2.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord2.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2.2 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
32renegcld 10457 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -(𝐹𝑘) ∈ ℝ)
4 eqid 2622 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))
53, 4fmptd 6385 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)):(𝑀...𝑁)⟶ℝ)
65ffvelrnda 6359 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ∈ ℝ)
7 monoord2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
87ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
109fveq2d 6195 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
11 fveq2 6191 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1210, 11breq12d 4666 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1312cbvralv 3171 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
148, 13sylib 208 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1514r19.21bi 2932 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
16 fzp1elp1 12394 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1716adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
18 eluzelz 11697 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2019zcnd 11483 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
21 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
22 npcan 10290 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2320, 21, 22sylancl 694 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2423oveq2d 6666 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2524adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2617, 25eleqtrd 2703 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
272ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
2827adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
29 fveq2 6191 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
3029eleq1d 2686 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
3130rspcv 3305 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹‘(𝑛 + 1)) ∈ ℝ))
3226, 28, 31sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
33 fzssp1 12384 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3433, 24syl5sseq 3653 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3534sselda 3603 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
3611eleq1d 2686 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
3736rspcv 3305 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑛) ∈ ℝ))
3835, 28, 37sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ)
3932, 38lenegd 10606 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1))))
4015, 39mpbid 222 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1)))
4111negeqd 10275 . . . . . . 7 (𝑘 = 𝑛 → -(𝐹𝑘) = -(𝐹𝑛))
42 negex 10279 . . . . . . 7 -(𝐹𝑛) ∈ V
4341, 4, 42fvmpt 6282 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4435, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4529negeqd 10275 . . . . . . 7 (𝑘 = (𝑛 + 1) → -(𝐹𝑘) = -(𝐹‘(𝑛 + 1)))
46 negex 10279 . . . . . . 7 -(𝐹‘(𝑛 + 1)) ∈ V
4745, 4, 46fvmpt 6282 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4826, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4940, 44, 483brtr4d 4685 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)))
501, 6, 49monoord 12831 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁))
51 eluzfz1 12348 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6191 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453negeqd 10275 . . . . 5 (𝑘 = 𝑀 → -(𝐹𝑘) = -(𝐹𝑀))
55 negex 10279 . . . . 5 -(𝐹𝑀) ∈ V
5654, 4, 55fvmpt 6282 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
58 eluzfz2 12349 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6191 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160negeqd 10275 . . . . 5 (𝑘 = 𝑁 → -(𝐹𝑘) = -(𝐹𝑁))
62 negex 10279 . . . . 5 -(𝐹𝑁) ∈ V
6361, 4, 62fvmpt 6282 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6550, 57, 643brtr3d 4684 . 2 (𝜑 → -(𝐹𝑀) ≤ -(𝐹𝑁))
6660eleq1d 2686 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
6766rspcv 3305 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑁) ∈ ℝ))
6859, 27, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
6953eleq1d 2686 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
7069rspcv 3305 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
7152, 27, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ)
7268, 71lenegd 10606 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -(𝐹𝑀) ≤ -(𝐹𝑁)))
7365, 72mpbird 247 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939  cle 10075  cmin 10266  -cneg 10267  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  iseraltlem1  14412  climcndslem1  14581  climcndslem2  14582  dvfsumlem3  23791  emcllem7  24728  climinf  39838
  Copyright terms: Public domain W3C validator