MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monoord2 Structured version   Visualization version   Unicode version

Theorem monoord2 12832
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord2.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord2.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
Assertion
Ref Expression
monoord2  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 monoord2.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
32renegcld 10457 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u ( F `
 k )  e.  RR )
4 eqid 2622 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)  =  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)
53, 4fmptd 6385 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) : ( M ... N
) --> RR )
65ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  e.  RR )
7 monoord2.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
87ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  (
k  +  1 ) )  <_  ( F `  k ) )
9 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
109fveq2d 6195 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
11 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1210, 11breq12d 4666 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
1312cbvralv 3171 . . . . . . . 8  |-  ( A. k  e.  ( M ... ( N  -  1 ) ) ( F `
 ( k  +  1 ) )  <_ 
( F `  k
)  <->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
148, 13sylib 208 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
1514r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
)
16 fzp1elp1 12394 . . . . . . . . . 10  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  (
n  +  1 )  e.  ( M ... ( ( N  - 
1 )  +  1 ) ) )
1716adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... (
( N  -  1 )  +  1 ) ) )
18 eluzelz 11697 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
191, 18syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2019zcnd 11483 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
21 ax-1cn 9994 . . . . . . . . . . . 12  |-  1  e.  CC
22 npcan 10290 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2320, 21, 22sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2423oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
2524adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
2617, 25eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
272ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
2827adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
29 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
3029eleq1d 2686 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
3130rspcv 3305 . . . . . . . 8  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  ( n  +  1 ) )  e.  RR ) )
3226, 28, 31sylc 65 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
33 fzssp1 12384 . . . . . . . . . 10  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
3433, 24syl5sseq 3653 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
3534sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( M ... N ) )
3611eleq1d 2686 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
3736rspcv 3305 . . . . . . . 8  |-  ( n  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  n )  e.  RR ) )
3835, 28, 37sylc 65 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  e.  RR )
3932, 38lenegd 10606 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( F `  ( n  +  1 ) )  <_  ( F `  n )  <->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) ) )
4015, 39mpbid 222 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) )
4111negeqd 10275 . . . . . . 7  |-  ( k  =  n  ->  -u ( F `  k )  =  -u ( F `  n ) )
42 negex 10279 . . . . . . 7  |-  -u ( F `  n )  e.  _V
4341, 4, 42fvmpt 6282 . . . . . 6  |-  ( n  e.  ( M ... N )  ->  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4435, 43syl 17 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4529negeqd 10275 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  -u ( F `  k )  =  -u ( F `  ( n  +  1
) ) )
46 negex 10279 . . . . . . 7  |-  -u ( F `  ( n  +  1 ) )  e.  _V
4745, 4, 46fvmpt 6282 . . . . . 6  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  ( n  +  1
) )  =  -u ( F `  ( n  +  1 ) ) )
4826, 47syl 17 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4940, 44, 483brtr4d 4685 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  <_  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) ) )
501, 6, 49monoord 12831 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  <_  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N ) )
51 eluzfz1 12348 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
521, 51syl 17 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
53 fveq2 6191 . . . . . 6  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
5453negeqd 10275 . . . . 5  |-  ( k  =  M  ->  -u ( F `  k )  =  -u ( F `  M ) )
55 negex 10279 . . . . 5  |-  -u ( F `  M )  e.  _V
5654, 4, 55fvmpt 6282 . . . 4  |-  ( M  e.  ( M ... N )  ->  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
5752, 56syl 17 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
58 eluzfz2 12349 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
591, 58syl 17 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
60 fveq2 6191 . . . . . 6  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
6160negeqd 10275 . . . . 5  |-  ( k  =  N  ->  -u ( F `  k )  =  -u ( F `  N ) )
62 negex 10279 . . . . 5  |-  -u ( F `  N )  e.  _V
6361, 4, 62fvmpt 6282 . . . 4  |-  ( N  e.  ( M ... N )  ->  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
6459, 63syl 17 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
6550, 57, 643brtr3d 4684 . 2  |-  ( ph  -> 
-u ( F `  M )  <_  -u ( F `  N )
)
6660eleq1d 2686 . . . . 5  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
6766rspcv 3305 . . . 4  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  N )  e.  RR ) )
6859, 27, 67sylc 65 . . 3  |-  ( ph  ->  ( F `  N
)  e.  RR )
6953eleq1d 2686 . . . . 5  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
7069rspcv 3305 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  M )  e.  RR ) )
7152, 27, 70sylc 65 . . 3  |-  ( ph  ->  ( F `  M
)  e.  RR )
7268, 71lenegd 10606 . 2  |-  ( ph  ->  ( ( F `  N )  <_  ( F `  M )  <->  -u ( F `  M
)  <_  -u ( F `
 N ) ) )
7365, 72mpbird 247 1  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  iseraltlem1  14412  climcndslem1  14581  climcndslem2  14582  dvfsumlem3  23791  emcllem7  24728  climinf  39838
  Copyright terms: Public domain W3C validator