Proof of Theorem nmbdfnlbi
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = (𝑇‘0ℎ)) |
| 2 | | nmbdfnlb.1 |
. . . . . . . 8
⊢ (𝑇 ∈ LinFn ∧
(normfn‘𝑇)
∈ ℝ) |
| 3 | 2 | simpli 474 |
. . . . . . 7
⊢ 𝑇 ∈ LinFn |
| 4 | 3 | lnfn0i 28901 |
. . . . . 6
⊢ (𝑇‘0ℎ) =
0 |
| 5 | 1, 4 | syl6eq 2672 |
. . . . 5
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = 0) |
| 6 | 5 | abs00bd 14031 |
. . . 4
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) = 0) |
| 7 | | 0le0 11110 |
. . . . 5
⊢ 0 ≤
0 |
| 8 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
| 9 | | norm0 27985 |
. . . . . . . 8
⊢
(normℎ‘0ℎ) =
0 |
| 10 | 8, 9 | syl6eq 2672 |
. . . . . . 7
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) = 0) |
| 11 | 10 | oveq2d 6666 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
((normfn‘𝑇) ·
(normℎ‘𝐴)) = ((normfn‘𝑇) · 0)) |
| 12 | 2 | simpri 478 |
. . . . . . . 8
⊢
(normfn‘𝑇) ∈ ℝ |
| 13 | 12 | recni 10052 |
. . . . . . 7
⊢
(normfn‘𝑇) ∈ ℂ |
| 14 | 13 | mul01i 10226 |
. . . . . 6
⊢
((normfn‘𝑇) · 0) = 0 |
| 15 | 11, 14 | syl6req 2673 |
. . . . 5
⊢ (𝐴 = 0ℎ → 0
= ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 16 | 7, 15 | syl5breq 4690 |
. . . 4
⊢ (𝐴 = 0ℎ → 0
≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 17 | 6, 16 | eqbrtrd 4675 |
. . 3
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 18 | 17 | adantl 482 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 19 | 3 | lnfnfi 28900 |
. . . . . . . . . 10
⊢ 𝑇:
ℋ⟶ℂ |
| 20 | 19 | ffvelrni 6358 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
| 21 | 20 | abscld 14175 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ∈
ℝ) |
| 22 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℝ) |
| 23 | 22 | recnd 10068 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℂ) |
| 24 | | normcl 27982 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
| 25 | 24 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
| 26 | 25 | recnd 10068 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
| 27 | | normne0 27987 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
| 28 | 27 | biimpar 502 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
| 29 | 23, 26, 28 | divrec2d 10805 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
| 30 | 25, 28 | rereccld 10852 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
| 31 | 30 | recnd 10068 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
| 32 | | simpl 473 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
| 33 | 3 | lnfnmuli 28903 |
. . . . . . . 8
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
| 35 | 34 | fveq2d 6195 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) = (abs‘((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴)))) |
| 36 | 20 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘𝐴) ∈
ℂ) |
| 37 | 31, 36 | absmuld 14193 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘((1 / (normℎ‘𝐴)) · (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) · (abs‘(𝑇‘𝐴)))) |
| 38 | | normgt0 27984 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
| 39 | 38 | biimpa 501 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
| 40 | 25, 39 | recgt0d 10958 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
| 41 | | 0re 10040 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 42 | | ltle 10126 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 43 | 41, 42 | mpan 706 |
. . . . . . . . 9
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 44 | 30, 40, 43 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
| 45 | 30, 44 | absidd 14161 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(1 / (normℎ‘𝐴))) = (1 /
(normℎ‘𝐴))) |
| 46 | 45 | oveq1d 6665 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(1 / (normℎ‘𝐴))) · (abs‘(𝑇‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
| 47 | 35, 37, 46 | 3eqtrrd 2661 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) · (abs‘(𝑇‘𝐴))) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
| 48 | 29, 47 | eqtrd 2656 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
| 49 | | hvmulcl 27870 |
. . . . . 6
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 50 | 31, 32, 49 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 51 | | normcl 27982 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ∈ ℝ) |
| 52 | 50, 51 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈
ℝ) |
| 53 | | norm1 28106 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
| 54 | | eqle 10139 |
. . . . . 6
⊢
(((normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) = 1) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) |
| 55 | 52, 53, 54 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
| 56 | | nmfnlb 28783 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ℂ ∧
((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 57 | 19, 56 | mp3an1 1411 |
. . . . 5
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 58 | 50, 55, 57 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 59 | 48, 58 | eqbrtrd 4675 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)) |
| 60 | 12 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘𝑇) ∈ ℝ) |
| 61 | | ledivmul2 10902 |
. . . 4
⊢
(((abs‘(𝑇‘𝐴)) ∈ ℝ ∧
(normfn‘𝑇)
∈ ℝ ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 <
(normℎ‘𝐴))) → (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
| 62 | 22, 60, 25, 39, 61 | syl112anc 1330 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
| 63 | 59, 62 | mpbid 222 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 64 | 18, 63 | pm2.61dane 2881 |
1
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |