| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmzsubg | Structured version Visualization version Unicode version | ||
| Description: The normalizer
NG(S) of a subset |
| Ref | Expression |
|---|---|
| elnmz.1 |
|
| nmzsubg.2 |
|
| nmzsubg.3 |
|
| Ref | Expression |
|---|---|
| nmzsubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 |
. . . 4
| |
| 2 | ssrab2 3687 |
. . . 4
| |
| 3 | 1, 2 | eqsstri 3635 |
. . 3
|
| 4 | 3 | a1i 11 |
. 2
|
| 5 | nmzsubg.2 |
. . . . 5
| |
| 6 | eqid 2622 |
. . . . 5
| |
| 7 | 5, 6 | grpidcl 17450 |
. . . 4
|
| 8 | nmzsubg.3 |
. . . . . . . 8
| |
| 9 | 5, 8, 6 | grplid 17452 |
. . . . . . 7
|
| 10 | 5, 8, 6 | grprid 17453 |
. . . . . . 7
|
| 11 | 9, 10 | eqtr4d 2659 |
. . . . . 6
|
| 12 | 11 | eleq1d 2686 |
. . . . 5
|
| 13 | 12 | ralrimiva 2966 |
. . . 4
|
| 14 | 1 | elnmz 17633 |
. . . 4
|
| 15 | 7, 13, 14 | sylanbrc 698 |
. . 3
|
| 16 | ne0i 3921 |
. . 3
| |
| 17 | 15, 16 | syl 17 |
. 2
|
| 18 | id 22 |
. . . . . . . 8
| |
| 19 | 3 | sseli 3599 |
. . . . . . . 8
|
| 20 | 3 | sseli 3599 |
. . . . . . . 8
|
| 21 | 5, 8 | grpcl 17430 |
. . . . . . . 8
|
| 22 | 18, 19, 20, 21 | syl3an 1368 |
. . . . . . 7
|
| 23 | simpl1 1064 |
. . . . . . . . . . 11
| |
| 24 | simpl2 1065 |
. . . . . . . . . . . 12
| |
| 25 | 3, 24 | sseldi 3601 |
. . . . . . . . . . 11
|
| 26 | simpl3 1066 |
. . . . . . . . . . . 12
| |
| 27 | 3, 26 | sseldi 3601 |
. . . . . . . . . . 11
|
| 28 | simpr 477 |
. . . . . . . . . . 11
| |
| 29 | 5, 8 | grpass 17431 |
. . . . . . . . . . 11
|
| 30 | 23, 25, 27, 28, 29 | syl13anc 1328 |
. . . . . . . . . 10
|
| 31 | 30 | eleq1d 2686 |
. . . . . . . . 9
|
| 32 | 5, 8 | grpcl 17430 |
. . . . . . . . . . . 12
|
| 33 | 23, 27, 28, 32 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 34 | 1 | nmzbi 17634 |
. . . . . . . . . . 11
|
| 35 | 24, 33, 34 | syl2anc 693 |
. . . . . . . . . 10
|
| 36 | 5, 8 | grpass 17431 |
. . . . . . . . . . . 12
|
| 37 | 23, 27, 28, 25, 36 | syl13anc 1328 |
. . . . . . . . . . 11
|
| 38 | 37 | eleq1d 2686 |
. . . . . . . . . 10
|
| 39 | 5, 8 | grpcl 17430 |
. . . . . . . . . . . 12
|
| 40 | 23, 28, 25, 39 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 41 | 1 | nmzbi 17634 |
. . . . . . . . . . 11
|
| 42 | 26, 40, 41 | syl2anc 693 |
. . . . . . . . . 10
|
| 43 | 35, 38, 42 | 3bitrd 294 |
. . . . . . . . 9
|
| 44 | 5, 8 | grpass 17431 |
. . . . . . . . . . 11
|
| 45 | 23, 28, 25, 27, 44 | syl13anc 1328 |
. . . . . . . . . 10
|
| 46 | 45 | eleq1d 2686 |
. . . . . . . . 9
|
| 47 | 31, 43, 46 | 3bitrd 294 |
. . . . . . . 8
|
| 48 | 47 | ralrimiva 2966 |
. . . . . . 7
|
| 49 | 1 | elnmz 17633 |
. . . . . . 7
|
| 50 | 22, 48, 49 | sylanbrc 698 |
. . . . . 6
|
| 51 | 50 | 3expa 1265 |
. . . . 5
|
| 52 | 51 | ralrimiva 2966 |
. . . 4
|
| 53 | eqid 2622 |
. . . . . . 7
| |
| 54 | 5, 53 | grpinvcl 17467 |
. . . . . 6
|
| 55 | 19, 54 | sylan2 491 |
. . . . 5
|
| 56 | simplr 792 |
. . . . . . . 8
| |
| 57 | simpll 790 |
. . . . . . . . 9
| |
| 58 | 55 | adantr 481 |
. . . . . . . . 9
|
| 59 | simpr 477 |
. . . . . . . . . 10
| |
| 60 | 5, 8 | grpcl 17430 |
. . . . . . . . . 10
|
| 61 | 57, 59, 58, 60 | syl3anc 1326 |
. . . . . . . . 9
|
| 62 | 5, 8 | grpcl 17430 |
. . . . . . . . 9
|
| 63 | 57, 58, 61, 62 | syl3anc 1326 |
. . . . . . . 8
|
| 64 | 1 | nmzbi 17634 |
. . . . . . . 8
|
| 65 | 56, 63, 64 | syl2anc 693 |
. . . . . . 7
|
| 66 | 3, 56 | sseldi 3601 |
. . . . . . . . . . 11
|
| 67 | 5, 8, 6, 53 | grprinv 17469 |
. . . . . . . . . . 11
|
| 68 | 57, 66, 67 | syl2anc 693 |
. . . . . . . . . 10
|
| 69 | 68 | oveq1d 6665 |
. . . . . . . . 9
|
| 70 | 5, 8 | grpass 17431 |
. . . . . . . . . 10
|
| 71 | 57, 66, 58, 61, 70 | syl13anc 1328 |
. . . . . . . . 9
|
| 72 | 5, 8, 6 | grplid 17452 |
. . . . . . . . . 10
|
| 73 | 57, 61, 72 | syl2anc 693 |
. . . . . . . . 9
|
| 74 | 69, 71, 73 | 3eqtr3d 2664 |
. . . . . . . 8
|
| 75 | 74 | eleq1d 2686 |
. . . . . . 7
|
| 76 | 5, 8 | grpass 17431 |
. . . . . . . . . 10
|
| 77 | 57, 58, 61, 66, 76 | syl13anc 1328 |
. . . . . . . . 9
|
| 78 | 5, 8 | grpass 17431 |
. . . . . . . . . . . 12
|
| 79 | 57, 59, 58, 66, 78 | syl13anc 1328 |
. . . . . . . . . . 11
|
| 80 | 5, 8, 6, 53 | grplinv 17468 |
. . . . . . . . . . . . 13
|
| 81 | 57, 66, 80 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 82 | 81 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 83 | 5, 8, 6 | grprid 17453 |
. . . . . . . . . . . 12
|
| 84 | 57, 59, 83 | syl2anc 693 |
. . . . . . . . . . 11
|
| 85 | 79, 82, 84 | 3eqtrd 2660 |
. . . . . . . . . 10
|
| 86 | 85 | oveq2d 6666 |
. . . . . . . . 9
|
| 87 | 77, 86 | eqtrd 2656 |
. . . . . . . 8
|
| 88 | 87 | eleq1d 2686 |
. . . . . . 7
|
| 89 | 65, 75, 88 | 3bitr3rd 299 |
. . . . . 6
|
| 90 | 89 | ralrimiva 2966 |
. . . . 5
|
| 91 | 1 | elnmz 17633 |
. . . . 5
|
| 92 | 55, 90, 91 | sylanbrc 698 |
. . . 4
|
| 93 | 52, 92 | jca 554 |
. . 3
|
| 94 | 93 | ralrimiva 2966 |
. 2
|
| 95 | 5, 8, 53 | issubg2 17609 |
. 2
|
| 96 | 4, 17, 94, 95 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-subg 17591 |
| This theorem is referenced by: nmznsg 17638 sylow3lem3 18044 sylow3lem4 18045 sylow3lem6 18047 |
| Copyright terms: Public domain | W3C validator |