MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Visualization version   Unicode version

Theorem nmzsubg 17635
Description: The normalizer NG(S) of a subset  S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
nmzsubg  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
Distinct variable groups:    x, y, G    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    N( x, y)

Proof of Theorem nmzsubg
Dummy variables  z  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
2 ssrab2 3687 . . . 4  |-  { x  e.  X  |  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) }  C_  X
31, 2eqsstri 3635 . . 3  |-  N  C_  X
43a1i 11 . 2  |-  ( G  e.  Grp  ->  N  C_  X )
5 nmzsubg.2 . . . . 5  |-  X  =  ( Base `  G
)
6 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
75, 6grpidcl 17450 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
8 nmzsubg.3 . . . . . . . 8  |-  .+  =  ( +g  `  G )
95, 8, 6grplid 17452 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  z )
105, 8, 6grprid 17453 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( z  .+  ( 0g `  G ) )  =  z )
119, 10eqtr4d 2659 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  ( z 
.+  ( 0g `  G ) ) )
1211eleq1d 2686 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( 0g
`  G )  .+  z )  e.  S  <->  ( z  .+  ( 0g
`  G ) )  e.  S ) )
1312ralrimiva 2966 . . . 4  |-  ( G  e.  Grp  ->  A. z  e.  X  ( (
( 0g `  G
)  .+  z )  e.  S  <->  ( z  .+  ( 0g `  G ) )  e.  S ) )
141elnmz 17633 . . . 4  |-  ( ( 0g `  G )  e.  N  <->  ( ( 0g `  G )  e.  X  /\  A. z  e.  X  ( (
( 0g `  G
)  .+  z )  e.  S  <->  ( z  .+  ( 0g `  G ) )  e.  S ) ) )
157, 13, 14sylanbrc 698 . . 3  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  N )
16 ne0i 3921 . . 3  |-  ( ( 0g `  G )  e.  N  ->  N  =/=  (/) )
1715, 16syl 17 . 2  |-  ( G  e.  Grp  ->  N  =/=  (/) )
18 id 22 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Grp )
193sseli 3599 . . . . . . . 8  |-  ( z  e.  N  ->  z  e.  X )
203sseli 3599 . . . . . . . 8  |-  ( w  e.  N  ->  w  e.  X )
215, 8grpcl 17430 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X  /\  w  e.  X )  ->  ( z  .+  w
)  e.  X )
2218, 19, 20, 21syl3an 1368 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  ( z  .+  w
)  e.  X )
23 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  G  e.  Grp )
24 simpl2 1065 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  z  e.  N )
253, 24sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  z  e.  X )
26 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  w  e.  N )
273, 26sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  w  e.  X )
28 simpr 477 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  u  e.  X )
295, 8grpass 17431 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( z  e.  X  /\  w  e.  X  /\  u  e.  X
) )  ->  (
( z  .+  w
)  .+  u )  =  ( z  .+  ( w  .+  u ) ) )
3023, 25, 27, 28, 29syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  w )  .+  u )  =  ( z  .+  ( w 
.+  u ) ) )
3130eleq1d 2686 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( z  .+  ( w  .+  u ) )  e.  S ) )
325, 8grpcl 17430 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  u  e.  X )  ->  ( w  .+  u
)  e.  X )
3323, 27, 28, 32syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( w  .+  u )  e.  X
)
341nmzbi 17634 . . . . . . . . . . 11  |-  ( ( z  e.  N  /\  ( w  .+  u )  e.  X )  -> 
( ( z  .+  ( w  .+  u ) )  e.  S  <->  ( (
w  .+  u )  .+  z )  e.  S
) )
3524, 33, 34syl2anc 693 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( w  .+  u ) )  e.  S  <->  ( ( w 
.+  u )  .+  z )  e.  S
) )
365, 8grpass 17431 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( w  e.  X  /\  u  e.  X  /\  z  e.  X
) )  ->  (
( w  .+  u
)  .+  z )  =  ( w  .+  ( u  .+  z ) ) )
3723, 27, 28, 25, 36syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
w  .+  u )  .+  z )  =  ( w  .+  ( u 
.+  z ) ) )
3837eleq1d 2686 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( w  .+  u
)  .+  z )  e.  S  <->  ( w  .+  ( u  .+  z ) )  e.  S ) )
395, 8grpcl 17430 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  z  e.  X )  ->  ( u  .+  z
)  e.  X )
4023, 28, 25, 39syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( u  .+  z )  e.  X
)
411nmzbi 17634 . . . . . . . . . . 11  |-  ( ( w  e.  N  /\  ( u  .+  z )  e.  X )  -> 
( ( w  .+  ( u  .+  z ) )  e.  S  <->  ( (
u  .+  z )  .+  w )  e.  S
) )
4226, 40, 41syl2anc 693 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
w  .+  ( u  .+  z ) )  e.  S  <->  ( ( u 
.+  z )  .+  w )  e.  S
) )
4335, 38, 423bitrd 294 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( w  .+  u ) )  e.  S  <->  ( ( u 
.+  z )  .+  w )  e.  S
) )
445, 8grpass 17431 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( u  e.  X  /\  z  e.  X  /\  w  e.  X
) )  ->  (
( u  .+  z
)  .+  w )  =  ( u  .+  ( z  .+  w
) ) )
4523, 28, 25, 27, 44syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  z )  .+  w )  =  ( u  .+  ( z 
.+  w ) ) )
4645eleq1d 2686 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( u  .+  z
)  .+  w )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) )
4731, 43, 463bitrd 294 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) )
4847ralrimiva 2966 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  A. u  e.  X  ( ( ( z 
.+  w )  .+  u )  e.  S  <->  ( u  .+  ( z 
.+  w ) )  e.  S ) )
491elnmz 17633 . . . . . . 7  |-  ( ( z  .+  w )  e.  N  <->  ( (
z  .+  w )  e.  X  /\  A. u  e.  X  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) ) )
5022, 48, 49sylanbrc 698 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  ( z  .+  w
)  e.  N )
51503expa 1265 . . . . 5  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  w  e.  N
)  ->  ( z  .+  w )  e.  N
)
5251ralrimiva 2966 . . . 4  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  A. w  e.  N  ( z  .+  w
)  e.  N )
53 eqid 2622 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
545, 53grpinvcl 17467 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( invg `  G ) `  z
)  e.  X )
5519, 54sylan2 491 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( ( invg `  G ) `  z
)  e.  X )
56 simplr 792 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  z  e.  N )
57 simpll 790 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  G  e.  Grp )
5855adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( ( invg `  G ) `
 z )  e.  X )
59 simpr 477 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  u  e.  X )
605, 8grpcl 17430 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X )  ->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  X
)
6157, 59, 58, 60syl3anc 1326 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  X
)
625, 8grpcl 17430 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  z
)  e.  X  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X )  ->  ( ( ( invg `  G
) `  z )  .+  ( u  .+  (
( invg `  G ) `  z
) ) )  e.  X )
6357, 58, 61, 62syl3anc 1326 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  e.  X )
641nmzbi 17634 . . . . . . . 8  |-  ( ( z  e.  N  /\  ( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  e.  S
) )
6556, 63, 64syl2anc 693 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  e.  S
) )
663, 56sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  z  e.  X )
675, 8, 6, 53grprinv 17469 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( z  .+  (
( invg `  G ) `  z
) )  =  ( 0g `  G ) )
6857, 66, 67syl2anc 693 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( z  .+  ( ( invg `  G ) `  z
) )  =  ( 0g `  G ) )
6968oveq1d 6665 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( ( 0g `  G )  .+  (
u  .+  ( ( invg `  G ) `
 z ) ) ) )
705, 8grpass 17431 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( z  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X ) )  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( z  .+  (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) ) )
7157, 66, 58, 61, 70syl13anc 1328 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( z  .+  (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) ) )
725, 8, 6grplid 17452 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X )  ->  ( ( 0g
`  G )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  =  ( u  .+  ( ( invg `  G
) `  z )
) )
7357, 61, 72syl2anc 693 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( ( 0g `  G )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  =  ( u  .+  ( ( invg `  G
) `  z )
) )
7469, 71, 733eqtr3d 2664 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( z  .+  ( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) ) )  =  ( u  .+  (
( invg `  G ) `  z
) ) )
7574eleq1d 2686 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  S
) )
765, 8grpass 17431 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 z )  e.  X  /\  ( u 
.+  ( ( invg `  G ) `
 z ) )  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( invg `  G
) `  z )  .+  ( u  .+  (
( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) ) )
7757, 58, 61, 66, 76syl13anc 1328 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) ) )
785, 8grpass 17431 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( u  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X  /\  z  e.  X )
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  ( u  .+  (
( ( invg `  G ) `  z
)  .+  z )
) )
7957, 59, 58, 66, 78syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  ( u  .+  (
( ( invg `  G ) `  z
)  .+  z )
) )
805, 8, 6, 53grplinv 17468 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 z )  .+  z )  =  ( 0g `  G ) )
8157, 66, 80syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  z )  =  ( 0g `  G ) )
8281oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( ( ( invg `  G ) `
 z )  .+  z ) )  =  ( u  .+  ( 0g `  G ) ) )
835, 8, 6grprid 17453 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X )  ->  ( u  .+  ( 0g `  G ) )  =  u )
8457, 59, 83syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( 0g `  G
) )  =  u )
8579, 82, 843eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  u )
8685oveq2d 6666 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) )  =  ( ( ( invg `  G
) `  z )  .+  u ) )
8777, 86eqtrd 2656 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  u )
)
8887eleq1d 2686 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  .+  z
)  e.  S  <->  ( (
( invg `  G ) `  z
)  .+  u )  e.  S ) )
8965, 75, 883bitr3rd 299 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  S
) )
9089ralrimiva 2966 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  A. u  e.  X  ( ( ( ( invg `  G
) `  z )  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G
) `  z )
)  e.  S ) )
911elnmz 17633 . . . . 5  |-  ( ( ( invg `  G ) `  z
)  e.  N  <->  ( (
( invg `  G ) `  z
)  e.  X  /\  A. u  e.  X  ( ( ( ( invg `  G ) `
 z )  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G
) `  z )
)  e.  S ) ) )
9255, 90, 91sylanbrc 698 . . . 4  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( ( invg `  G ) `  z
)  e.  N )
9352, 92jca 554 . . 3  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( A. w  e.  N  ( z  .+  w )  e.  N  /\  ( ( invg `  G ) `  z
)  e.  N ) )
9493ralrimiva 2966 . 2  |-  ( G  e.  Grp  ->  A. z  e.  N  ( A. w  e.  N  (
z  .+  w )  e.  N  /\  (
( invg `  G ) `  z
)  e.  N ) )
955, 8, 53issubg2 17609 . 2  |-  ( G  e.  Grp  ->  ( N  e.  (SubGrp `  G
)  <->  ( N  C_  X  /\  N  =/=  (/)  /\  A. z  e.  N  ( A. w  e.  N  ( z  .+  w
)  e.  N  /\  ( ( invg `  G ) `  z
)  e.  N ) ) ) )
964, 17, 94, 95mpbir3and 1245 1  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591
This theorem is referenced by:  nmznsg  17638  sylow3lem3  18044  sylow3lem4  18045  sylow3lem6  18047
  Copyright terms: Public domain W3C validator