Proof of Theorem sylow3lem4
| Step | Hyp | Ref
| Expression |
| 1 | | sylow3.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | sylow3.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 3 | | sylow3.xf |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 4 | | sylow3.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 5 | | sylow3lem1.a |
. . 3
⊢ + =
(+g‘𝐺) |
| 6 | | sylow3lem1.d |
. . 3
⊢ − =
(-g‘𝐺) |
| 7 | | sylow3lem1.m |
. . 3
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
| 8 | | sylow3lem2.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| 9 | | sylow3lem2.h |
. . 3
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} |
| 10 | | sylow3lem2.n |
. . 3
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sylow3lem3 18044 |
. 2
⊢ (𝜑 → (#‘(𝑃 pSyl 𝐺)) = (#‘(𝑋 / (𝐺 ~QG 𝑁)))) |
| 12 | | slwsubg 18025 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 13 | 8, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 14 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝐺 ↾s 𝑁) = (𝐺 ↾s 𝑁) |
| 15 | 10, 1, 5, 14 | nmznsg 17638 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (NrmSGrp‘(𝐺 ↾s 𝑁))) |
| 16 | | nsgsubg 17626 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (NrmSGrp‘(𝐺 ↾s 𝑁)) → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
| 18 | 13, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
| 19 | 10, 1, 5 | nmzsubg 17635 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
| 20 | 2, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 21 | 14 | subgbas 17598 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺 ↾s 𝑁))) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 = (Base‘(𝐺 ↾s 𝑁))) |
| 23 | 1 | subgss 17595 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝑋) |
| 24 | 20, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ⊆ 𝑋) |
| 25 | | ssfi 8180 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Fin ∧ 𝑁 ⊆ 𝑋) → 𝑁 ∈ Fin) |
| 26 | 3, 24, 25 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 27 | 22, 26 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐺 ↾s 𝑁)) ∈ Fin) |
| 28 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘(𝐺
↾s 𝑁)) =
(Base‘(𝐺
↾s 𝑁)) |
| 29 | 28 | lagsubg 17656 |
. . . . . . . 8
⊢ ((𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁)) ∧ (Base‘(𝐺 ↾s 𝑁)) ∈ Fin) →
(#‘𝐾) ∥
(#‘(Base‘(𝐺
↾s 𝑁)))) |
| 30 | 18, 27, 29 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐾) ∥ (#‘(Base‘(𝐺 ↾s 𝑁)))) |
| 31 | 22 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑁) = (#‘(Base‘(𝐺 ↾s 𝑁)))) |
| 32 | 30, 31 | breqtrrd 4681 |
. . . . . 6
⊢ (𝜑 → (#‘𝐾) ∥ (#‘𝑁)) |
| 33 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 34 | 33 | subg0cl 17602 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐾) |
| 35 | 13, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐾) |
| 36 | | ne0i 3921 |
. . . . . . . . . 10
⊢
((0g‘𝐺) ∈ 𝐾 → 𝐾 ≠ ∅) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≠ ∅) |
| 38 | 1 | subgss 17595 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
| 39 | 13, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
| 40 | | ssfi 8180 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Fin ∧ 𝐾 ⊆ 𝑋) → 𝐾 ∈ Fin) |
| 41 | 3, 39, 40 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Fin) |
| 42 | | hashnncl 13157 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Fin →
((#‘𝐾) ∈ ℕ
↔ 𝐾 ≠
∅)) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((#‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅)) |
| 44 | 37, 43 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝐾) ∈ ℕ) |
| 45 | 44 | nnzd 11481 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐾) ∈ ℤ) |
| 46 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑁 ∈ Fin →
(#‘𝑁) ∈
ℕ0) |
| 47 | 26, 46 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝑁) ∈
ℕ0) |
| 48 | 47 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑁) ∈ ℤ) |
| 49 | | pwfi 8261 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
| 50 | 3, 49 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
| 51 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
| 52 | 1, 51 | eqger 17644 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋) |
| 53 | 20, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋) |
| 54 | 53 | qsss 7808 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋) |
| 55 | | ssfi 8180 |
. . . . . . . . . 10
⊢
((𝒫 𝑋 ∈
Fin ∧ (𝑋 /
(𝐺 ~QG
𝑁)) ⊆ 𝒫 𝑋) → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin) |
| 56 | 50, 54, 55 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin) |
| 57 | | hashcl 13147 |
. . . . . . . . 9
⊢ ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
| 58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
| 59 | 58 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) |
| 60 | | dvdscmul 15008 |
. . . . . . 7
⊢
(((#‘𝐾) ∈
ℤ ∧ (#‘𝑁)
∈ ℤ ∧ (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) → ((#‘𝐾) ∥ (#‘𝑁) → ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝐾)) ∥ ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝑁)))) |
| 61 | 45, 48, 59, 60 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((#‘𝐾) ∥ (#‘𝑁) → ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝐾)) ∥ ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝑁)))) |
| 62 | 32, 61 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝐾)) ∥ ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝑁))) |
| 63 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑋 ∈ Fin →
(#‘𝑋) ∈
ℕ0) |
| 64 | 3, 63 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝑋) ∈
ℕ0) |
| 65 | 64 | nn0cnd 11353 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑋) ∈ ℂ) |
| 66 | 44 | nncnd 11036 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐾) ∈ ℂ) |
| 67 | 44 | nnne0d 11065 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐾) ≠ 0) |
| 68 | 65, 66, 67 | divcan1d 10802 |
. . . . . 6
⊢ (𝜑 → (((#‘𝑋) / (#‘𝐾)) · (#‘𝐾)) = (#‘𝑋)) |
| 69 | 1, 51, 20, 3 | lagsubg2 17655 |
. . . . . 6
⊢ (𝜑 → (#‘𝑋) = ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝑁))) |
| 70 | 68, 69 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (((#‘𝑋) / (#‘𝐾)) · (#‘𝐾)) = ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝑁))) |
| 71 | 62, 70 | breqtrrd 4681 |
. . . 4
⊢ (𝜑 → ((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝐾)) ∥ (((#‘𝑋) / (#‘𝐾)) · (#‘𝐾))) |
| 72 | 1 | lagsubg 17656 |
. . . . . . 7
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝐾) ∥ (#‘𝑋)) |
| 73 | 13, 3, 72 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (#‘𝐾) ∥ (#‘𝑋)) |
| 74 | 64 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑋) ∈ ℤ) |
| 75 | | dvdsval2 14986 |
. . . . . . 7
⊢
(((#‘𝐾) ∈
ℤ ∧ (#‘𝐾)
≠ 0 ∧ (#‘𝑋)
∈ ℤ) → ((#‘𝐾) ∥ (#‘𝑋) ↔ ((#‘𝑋) / (#‘𝐾)) ∈ ℤ)) |
| 76 | 45, 67, 74, 75 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((#‘𝐾) ∥ (#‘𝑋) ↔ ((#‘𝑋) / (#‘𝐾)) ∈ ℤ)) |
| 77 | 73, 76 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((#‘𝑋) / (#‘𝐾)) ∈ ℤ) |
| 78 | | dvdsmulcr 15011 |
. . . . 5
⊢
(((#‘(𝑋
/ (𝐺
~QG 𝑁)))
∈ ℤ ∧ ((#‘𝑋) / (#‘𝐾)) ∈ ℤ ∧ ((#‘𝐾) ∈ ℤ ∧
(#‘𝐾) ≠ 0)) →
(((#‘(𝑋 /
(𝐺 ~QG
𝑁))) ·
(#‘𝐾)) ∥
(((#‘𝑋) /
(#‘𝐾)) ·
(#‘𝐾)) ↔
(#‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((#‘𝑋) / (#‘𝐾)))) |
| 79 | 59, 77, 45, 67, 78 | syl112anc 1330 |
. . . 4
⊢ (𝜑 → (((#‘(𝑋 / (𝐺 ~QG 𝑁))) · (#‘𝐾)) ∥ (((#‘𝑋) / (#‘𝐾)) · (#‘𝐾)) ↔ (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((#‘𝑋) / (#‘𝐾)))) |
| 80 | 71, 79 | mpbid 222 |
. . 3
⊢ (𝜑 → (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((#‘𝑋) / (#‘𝐾))) |
| 81 | 1, 3, 8 | slwhash 18039 |
. . . 4
⊢ (𝜑 → (#‘𝐾) = (𝑃↑(𝑃 pCnt (#‘𝑋)))) |
| 82 | 81 | oveq2d 6666 |
. . 3
⊢ (𝜑 → ((#‘𝑋) / (#‘𝐾)) = ((#‘𝑋) / (𝑃↑(𝑃 pCnt (#‘𝑋))))) |
| 83 | 80, 82 | breqtrd 4679 |
. 2
⊢ (𝜑 → (#‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((#‘𝑋) / (𝑃↑(𝑃 pCnt (#‘𝑋))))) |
| 84 | 11, 83 | eqbrtrd 4675 |
1
⊢ (𝜑 → (#‘(𝑃 pSyl 𝐺)) ∥ ((#‘𝑋) / (𝑃↑(𝑃 pCnt (#‘𝑋))))) |