MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Visualization version   GIF version

Theorem ovolscalem2 23282
Description: Lemma for ovolshft 23279. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolscalem2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolscalem2
Dummy variables 𝑓 𝑛 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
3 ovolsca.4 . . . . . 6 (𝜑 → (vol*‘𝐴) ∈ ℝ)
43adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
5 ovolsca.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
6 rpmulcl 11855 . . . . . 6 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
75, 6sylan 488 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
8 eqid 2622 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 23248 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 · 𝑦) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
102, 4, 7, 9syl3anc 1326 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
111ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ)
125ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈ ℝ+)
13 ovolsca.3 . . . . . 6 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
1413ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
153ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ)
16 fveq2 6191 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑓𝑚) = (𝑓𝑛))
1716fveq2d 6195 . . . . . . . 8 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
1817oveq1d 6665 . . . . . . 7 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) / 𝐶) = ((1st ‘(𝑓𝑛)) / 𝐶))
1916fveq2d 6195 . . . . . . . 8 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
2019oveq1d 6665 . . . . . . 7 (𝑚 = 𝑛 → ((2nd ‘(𝑓𝑚)) / 𝐶) = ((2nd ‘(𝑓𝑛)) / 𝐶))
2118, 20opeq12d 4410 . . . . . 6 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩ = ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
2221cbvmptv 4750 . . . . 5 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
23 elmapi 7879 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2423ad2antrl 764 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
25 simprrl 804 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ran ((,) ∘ 𝑓))
26 simplr 792 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+)
27 simprrr 805 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))
2811, 12, 14, 15, 8, 22, 24, 25, 26, 27ovolscalem1 23281 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2910, 28rexlimddv 3035 . . 3 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
3029ralrimiva 2966 . 2 (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
31 ssrab2 3687 . . . . 5 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
3213, 31syl6eqss 3655 . . . 4 (𝜑𝐵 ⊆ ℝ)
33 ovolcl 23246 . . . 4 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
3432, 33syl 17 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
353, 5rerpdivcld 11903 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
36 xralrple 12036 . . 3 (((vol*‘𝐵) ∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3734, 35, 36syl2anc 693 . 2 (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3830, 37mpbird 247 1 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  ran crn 5115  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  supcsup 8346  cr 9935  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  +crp 11832  (,)cioo 12175  seqcseq 12801  abscabs 13974  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovolsca  23283
  Copyright terms: Public domain W3C validator