| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
| 2 | 1 | oveq2d 6666 |
. . . 4
⊢ (𝑥 = 0 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑0))) |
| 3 | | oveq1 6657 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴))) |
| 4 | 2, 3 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = 0 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))) |
| 5 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) |
| 6 | 5 | oveq2d 6666 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑦))) |
| 7 | | oveq1 6657 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴))) |
| 8 | 6, 7 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)))) |
| 9 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 1))) |
| 10 | 9 | oveq2d 6666 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1)))) |
| 11 | | oveq1 6657 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))) |
| 12 | 10, 11 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
| 13 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝐴↑𝑥) = (𝐴↑-𝑦)) |
| 14 | 13 | oveq2d 6666 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑-𝑦))) |
| 15 | | oveq1 6657 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴))) |
| 16 | 14, 15 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
| 17 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) |
| 18 | 17 | oveq2d 6666 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑁))) |
| 19 | | oveq1 6657 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴))) |
| 20 | 18, 19 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
| 21 | | pc1 15560 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
| 22 | 21 | adantr 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
| 23 | | qcn 11802 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
| 24 | 23 | ad2antrl 764 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈
ℂ) |
| 25 | 24 | exp0d 13002 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1) |
| 26 | 25 | oveq2d 6666 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1)) |
| 27 | | pcqcl 15561 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ) |
| 28 | 27 | zcnd 11483 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ) |
| 29 | 28 | mul02d 10234 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 ·
(𝑃 pCnt 𝐴)) = 0) |
| 30 | 22, 26, 29 | 3eqtr4d 2666 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))) |
| 31 | | oveq1 6657 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
| 32 | | expp1 12867 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
| 33 | 24, 32 | sylan 488 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
| 34 | 33 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴↑𝑦) · 𝐴))) |
| 35 | | simpll 790 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
| 36 | | simplrl 800 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℚ) |
| 37 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ≠
0) |
| 38 | | nn0z 11400 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
| 39 | 38 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℤ) |
| 40 | | qexpclz 12881 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴↑𝑦) ∈ ℚ) |
| 41 | 36, 37, 39, 40 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ∈
ℚ) |
| 42 | 24 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
| 43 | 42, 37, 39 | expne0d 13014 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ≠ 0) |
| 44 | | pcqmul 15558 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 45 | 35, 41, 43, 36, 37, 44 | syl122anc 1335 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 46 | 34, 45 | eqtrd 2656 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 47 | | nn0cn 11302 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 48 | 47 | adantl 482 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
| 49 | | 1cnd 10056 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 1 ∈ ℂ) |
| 50 | 28 | adantr 481 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt 𝐴) ∈
ℂ) |
| 51 | 48, 49, 50 | adddird 10065 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 + 1) ·
(𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (1 · (𝑃 pCnt 𝐴)))) |
| 52 | 50 | mulid2d 10058 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (1 · (𝑃 pCnt
𝐴)) = (𝑃 pCnt 𝐴)) |
| 53 | 52 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 · (𝑃 pCnt 𝐴)) + (1 · (𝑃 pCnt 𝐴))) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
| 54 | 51, 53 | eqtrd 2656 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 + 1) ·
(𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
| 55 | 46, 54 | eqeq12d 2637 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))) |
| 56 | 31, 55 | syl5ibr 236 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
| 57 | 56 | ex 450 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))) |
| 58 | | negeq 10273 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 59 | | nnnn0 11299 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 60 | | expneg 12868 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
| 61 | 24, 59, 60 | syl2an 494 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
| 62 | 61 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴↑𝑦)))) |
| 63 | | simpll 790 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℙ) |
| 64 | 59, 41 | sylan2 491 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ∈ ℚ) |
| 65 | 59, 43 | sylan2 491 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ≠ 0) |
| 66 | | pcrec 15563 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 67 | 63, 64, 65, 66 | syl12anc 1324 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 68 | 62, 67 | eqtrd 2656 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 69 | | nncn 11028 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 70 | | mulneg1 10466 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 71 | 69, 28, 70 | syl2anr 495 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 72 | 68, 71 | eqeq12d 2637 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))) |
| 73 | 58, 72 | syl5ibr 236 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
| 74 | 73 | ex 450 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))) |
| 75 | 4, 8, 12, 16, 20, 30, 57, 74 | zindd 11478 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
| 76 | 75 | 3impia 1261 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |