MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqcl Structured version   Visualization version   GIF version

Theorem pcqcl 15561
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcqcl ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)

Proof of Theorem pcqcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 11790 . . 3 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 208 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 nncn 11028 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nnne0 11053 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
64, 5div0d 10800 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (0 / 𝑦) = 0)
76ad2antll 765 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (0 / 𝑦) = 0)
8 oveq1 6657 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
98eqeq1d 2624 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
107, 9syl5ibrcom 237 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
1110necon3d 2815 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
12 an32 839 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ))
13 pcdiv 15557 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
14 pczcl 15553 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
1514nn0zd 11480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
16153adant3 1081 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑥) ∈ ℤ)
17 nnz 11399 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1817, 5jca 554 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0))
19 pczcl 15553 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℕ0)
2019nn0zd 11480 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
2118, 20sylan2 491 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
22213adant2 1080 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
2316, 22zsubcld 11487 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) ∈ ℤ)
2413, 23eqeltrd 2701 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
25243expb 1266 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2612, 25sylan2b 492 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2726expr 643 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
2811, 27syld 47 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
29 neeq1 2856 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
30 oveq2 6658 . . . . . . . . 9 (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑥 / 𝑦)))
3130eleq1d 2686 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → ((𝑃 pCnt 𝑁) ∈ ℤ ↔ (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
3229, 31imbi12d 334 . . . . . . 7 (𝑁 = (𝑥 / 𝑦) → ((𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ) ↔ ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)))
3328, 32syl5ibrcom 237 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ)))
3433com23 86 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 ≠ 0 → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3534impancom 456 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3635adantrl 752 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3736rexlimdvv 3037 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))
383, 37mpd 15 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  (class class class)co 6650  0cc0 9936  cmin 10266   / cdiv 10684  cn 11020  cz 11377  cq 11788  cprime 15385   pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  pcqdiv  15562  pcexp  15564  pcxcl  15565  pcadd  15593  qexpz  15605  expnprm  15606  padicabv  25319  padicabvf  25320  padicabvcxp  25321
  Copyright terms: Public domain W3C validator