MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcidlem Structured version   Visualization version   GIF version

Theorem pcidlem 15576
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
2 prmnn 15388 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
4 simpr 477 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
53, 4nnexpcld 13030 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
61, 5pccld 15555 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0)
76nn0red 11352 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℝ)
87leidd 10594 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)))
95nnzd 11481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
10 pcdvdsb 15573 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
111, 9, 6, 10syl3anc 1326 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
128, 11mpbid 222 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴))
133, 6nnexpcld 13030 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℕ)
1413nnzd 11481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ)
15 dvdsle 15032 . . . . 5 (((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ ∧ (𝑃𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1614, 5, 15syl2anc 693 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1712, 16mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴))
183nnred 11035 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ)
196nn0zd 11480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℤ)
20 nn0z 11400 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2120adantl 482 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
22 prmuz2 15408 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
231, 22syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ (ℤ‘2))
24 eluz2b1 11759 . . . . . 6 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
2524simprbi 480 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2623, 25syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃)
2718, 19, 21, 26leexp2d 13039 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2817, 27mpbird 247 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ 𝐴)
29 iddvds 14995 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ (𝑃𝐴))
309, 29syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ (𝑃𝐴))
31 pcdvdsb 15573 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
321, 9, 4, 31syl3anc 1326 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
3330, 32mpbird 247 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))
34 nn0re 11301 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3534adantl 482 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
367, 35letri3d 10179 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))))
3728, 33, 36mpbir2and 957 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   < clt 10074  cle 10075  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  cexp 12860  cdvds 14983  cprime 15385   pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  pcid  15577  pcmpt  15596  dvdsppwf1o  24912
  Copyright terms: Public domain W3C validator