| Step | Hyp | Ref
| Expression |
| 1 | | plyadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | plyadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| 3 | | plyadd.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | plyadd.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 5 | | plyadd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 6 | | plybss 23950 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | | 0cnd 10033 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℂ) |
| 9 | 8 | snssd 4340 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) |
| 10 | 7, 9 | unssd 3789 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 11 | | cnex 10017 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 12 | | ssexg 4804 |
. . . . . . . 8
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
| 13 | 10, 11, 12 | sylancl 694 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | | nn0ex 11298 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 15 | | elmapg 7870 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 16 | 13, 14, 15 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 222 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 6057 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 19 | | plyadd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 20 | | elmapg 7870 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 21 | 13, 14, 20 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 22 | 19, 21 | mpbid 222 |
. . . . 5
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 23 | 22, 10 | fssd 6057 |
. . . 4
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 24 | | plyadd.a2 |
. . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 25 | | plyadd.b2 |
. . . 4
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 26 | | plyadd.f |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 27 | | plyadd.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plymullem1 23970 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
| 29 | 3, 4 | nn0addcld 11355 |
. . . 4
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
| 30 | | eqid 2622 |
. . . . . . 7
⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) |
| 31 | | plyadd.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 32 | 7, 30, 31 | un0addcl 11326 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 33 | | fzfid 12772 |
. . . . . 6
⊢ (𝜑 → (0...𝑛) ∈ Fin) |
| 34 | | elfznn0 12433 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 35 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
| 36 | 17, 34, 35 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
| 37 | | fznn0sub 12373 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
| 38 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
| 39 | 22, 37, 38 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
| 40 | 36, 39 | jca 554 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) |
| 41 | | plymul.x |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 42 | 7, 30, 41 | un0mulcl 11327 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0})) |
| 43 | 42 | caovclg 6826 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 44 | 40, 43 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 45 | | ssun2 3777 |
. . . . . . . 8
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 46 | | c0ex 10034 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 47 | 46 | snss 4316 |
. . . . . . . 8
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
| 48 | 45, 47 | mpbir 221 |
. . . . . . 7
⊢ 0 ∈
(𝑆 ∪
{0}) |
| 49 | 48 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (𝑆 ∪ {0})) |
| 50 | 10, 32, 33, 44, 49 | fsumcllem 14463 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 51 | 50 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 52 | 10, 29, 51 | elplyd 23958 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 53 | 28, 52 | eqeltrd 2701 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 54 | | plyun0 23953 |
. 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
| 55 | 53, 54 | syl6eleq 2711 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |