MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Visualization version   GIF version

Theorem pntlema 25285
Description: Lemma for pnt 25303. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
Assertion
Ref Expression
pntlema (𝜑𝑊 ∈ ℝ+)
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
2 pntlem1.y . . . . . 6 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
32simpld 475 . . . . 5 (𝜑𝑌 ∈ ℝ+)
4 4nn 11187 . . . . . . 7 4 ∈ ℕ
5 nnrp 11842 . . . . . . 7 (4 ∈ ℕ → 4 ∈ ℝ+)
64, 5ax-mp 5 . . . . . 6 4 ∈ ℝ+
7 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
8 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
9 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
10 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
11 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
12 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
137, 8, 9, 10, 11, 12pntlemd 25283 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1413simp1d 1073 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
15 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
16 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
17 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
18 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 25284 . . . . . . . 8 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2019simp1d 1073 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2114, 20rpmulcld 11888 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
22 rpdivcl 11856 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
236, 21, 22sylancr 695 . . . . 5 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
243, 23rpaddcld 11887 . . . 4 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
25 2z 11409 . . . 4 2 ∈ ℤ
26 rpexpcl 12879 . . . 4 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
2724, 25, 26sylancl 694 . . 3 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
28 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2928simpld 475 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
3019simp2d 1074 . . . . . . 7 (𝜑𝐾 ∈ ℝ+)
31 rpexpcl 12879 . . . . . . 7 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
3230, 25, 31sylancl 694 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℝ+)
3329, 32rpmulcld 11888 . . . . 5 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
34 4z 11411 . . . . 5 4 ∈ ℤ
35 rpexpcl 12879 . . . . 5 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
3633, 34, 35sylancl 694 . . . 4 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
37 3nn0 11310 . . . . . . . . . . 11 3 ∈ ℕ0
38 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
3937, 38decnncl 11518 . . . . . . . . . 10 32 ∈ ℕ
40 nnrp 11842 . . . . . . . . . 10 (32 ∈ ℕ → 32 ∈ ℝ+)
4139, 40ax-mp 5 . . . . . . . . 9 32 ∈ ℝ+
42 rpmulcl 11855 . . . . . . . . 9 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
4341, 9, 42sylancr 695 . . . . . . . 8 (𝜑 → (32 · 𝐵) ∈ ℝ+)
4419simp3d 1075 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
4544simp3d 1075 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
46 rpexpcl 12879 . . . . . . . . . . 11 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4720, 25, 46sylancl 694 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℝ+)
4814, 47rpmulcld 11888 . . . . . . . . 9 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
4945, 48rpmulcld 11888 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
5043, 49rpdivcld 11889 . . . . . . 7 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
51 3nn 11186 . . . . . . . . . 10 3 ∈ ℕ
52 nnrp 11842 . . . . . . . . . 10 (3 ∈ ℕ → 3 ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . 9 3 ∈ ℝ+
54 rpmulcl 11855 . . . . . . . . 9 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
5515, 53, 54sylancl 694 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ+)
56 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5755, 56rpaddcld 11887 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
5850, 57rpmulcld 11888 . . . . . 6 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
5958rpred 11872 . . . . 5 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
6059rpefcld 14835 . . . 4 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
6136, 60rpaddcld 11887 . . 3 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
6227, 61rpaddcld 11887 . 2 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+)
631, 62syl5eqel 2705 1 (𝜑𝑊 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  cz 11377  cdc 11493  +crp 11832  (,)cioo 12175  cexp 12860  expce 14792  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  pntlemb  25286  pntleme  25297
  Copyright terms: Public domain W3C validator