MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleme Structured version   Visualization version   GIF version

Theorem pntleme 25297
Description: Lemma for pnt 25303. Package up pntlemo 25296 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntleme.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntleme.K (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntleme.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntleme (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑤,𝐹   𝑦,𝑧   𝑢,𝑘,𝑦,𝑧,𝐿   𝑘,𝐾,𝑦,𝑧   𝜑,𝑣   𝑖,𝑘,𝑢,𝑣,𝑤,𝑦,𝑧,𝑅   𝑤,𝑈,𝑧   𝑣,𝑊,𝑤,𝑧   𝑘,𝑋,𝑦,𝑧   𝑖,𝑌,𝑧   𝑘,𝑎,𝑢,𝑣,𝑦,𝑧,𝐸
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑢,𝑖,𝑘,𝑎)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐶(𝑦,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐷(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐸(𝑤,𝑖)   𝐹(𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐾(𝑤,𝑣,𝑢,𝑖,𝑎)   𝐿(𝑤,𝑣,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑘,𝑎)   𝑋(𝑤,𝑣,𝑢,𝑖,𝑎)   𝑌(𝑦,𝑤,𝑣,𝑢,𝑘,𝑎)

Proof of Theorem pntleme
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . 3 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . 3 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . 3 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
6 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . 3 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . 3 (𝜑𝑈𝐴)
9 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . 3 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . 3 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . 3 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . 3 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlema 25285 . 2 (𝜑𝑊 ∈ ℝ+)
162adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐴 ∈ ℝ+)
173adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐵 ∈ ℝ+)
184adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐿 ∈ (0(,)1))
197adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ∈ ℝ+)
208adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈𝐴)
2111adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
2212adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2313adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐶 ∈ ℝ+)
24 simpr 477 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑣 ∈ (𝑊[,)+∞))
25 eqid 2622 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
26 eqid 2622 . . . 4 (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) = (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2))
27 pntleme.U . . . . 5 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2827adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
291, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 25284 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3029simp2d 1074 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
3130rpxrd 11873 . . . . . . 7 (𝜑𝐾 ∈ ℝ*)
32 pnfxr 10092 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
3430rpred 11872 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
35 ltpnf 11954 . . . . . . . 8 (𝐾 ∈ ℝ → 𝐾 < +∞)
3634, 35syl 17 . . . . . . 7 (𝜑𝐾 < +∞)
37 lbico1 12228 . . . . . . 7 ((𝐾 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐾 < +∞) → 𝐾 ∈ (𝐾[,)+∞))
3831, 33, 36, 37syl3anc 1326 . . . . . 6 (𝜑𝐾 ∈ (𝐾[,)+∞))
39 pntleme.K . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
40 oveq1 6657 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑘 · 𝑦) = (𝐾 · 𝑦))
4140breq2d 4665 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)))
4241anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦))))
4342anbi1d 741 . . . . . . . . 9 (𝑘 = 𝐾 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
4443rexbidv 3052 . . . . . . . 8 (𝑘 = 𝐾 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
4544ralbidv 2986 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
4645rspcva 3307 . . . . . 6 ((𝐾 ∈ (𝐾[,)+∞) ∧ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4738, 39, 46syl2anc 693 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4847adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
49 pntleme.C . . . . 5 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
5049adantr 481 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
511, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 48, 50pntlemo 25296 . . 3 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5251ralrimiva 2966 . 2 (𝜑 → ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
53 oveq1 6657 . . . 4 (𝑤 = 𝑊 → (𝑤[,)+∞) = (𝑊[,)+∞))
5453raleqdv 3144 . . 3 (𝑤 = 𝑊 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
5554rspcev 3309 . 2 ((𝑊 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5615, 52, 55syl2anc 693 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  3c3 11071  4c4 11072  cdc 11493  +crp 11832  (,)cioo 12175  [,)cico 12177  [,]cicc 12178  ...cfz 12326  cfl 12591  cexp 12860  abscabs 13974  Σcsu 14416  expce 14792  logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-em 24719  df-vma 24824  df-chp 24825
This theorem is referenced by:  pntlemp  25299
  Copyright terms: Public domain W3C validator