MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6a Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6a 25271
Description: Lemma for pntrlog2bndlem6 25272. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6a ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
Distinct variable groups:   𝑖,𝑎,𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6a
StepHypRef Expression
1 elioore 12205 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 11836 . . . . . . . 8 1 ∈ ℝ+
43a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
54rpred 11872 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 12233 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 475 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 10185 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 11911 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bndlem6.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
123a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
13 pntrlog2bndlem6.2 . . . . . . . 8 (𝜑 → 1 ≤ 𝐴)
1411, 12, 13rpgecld 11911 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
1514adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
1610, 15rpdivcld 11889 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
1716rprege0d 11879 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)))
18 flge0nn0 12621 . . . 4 (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0)
19 nn0p1nn 11332 . . . 4 ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
2017, 18, 193syl 18 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
21 nnuz 11723 . . 3 ℕ = (ℤ‘1)
2220, 21syl6eleq 2711 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1))
2316rpred 11872 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
2410rpge0d 11876 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
2513adantr 481 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴)
264, 15, 2, 24, 25lediv2ad 11894 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1))
272recnd 10068 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
2827div1d 10793 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
2926, 28breqtrd 4679 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥)
30 flword2 12614 . . 3 (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
3123, 2, 29, 30syl3anc 1326 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
32 fzsplit2 12366 . 2 ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1) ∧ (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
3322, 31, 32syl2anc 693 1 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cun 3572  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cuz 11687  +crp 11832  (,)cioo 12175  ...cfz 12326  cfl 12591  abscabs 13974  Σcsu 14416  logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-fz 12327  df-fl 12593
This theorem is referenced by:  pntrlog2bndlem6  25272
  Copyright terms: Public domain W3C validator